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Abstract In the context of software development, models
provide an abstract representation of a software system or a
part of it. In the software development process, they are pri-
marily used for documentation and communication purposes
in analysis, design, and implementation activities. Model-
Driven Engineering (MDE) further increases the importance
of models, as in MDE models are not only used for doc-
umentation and communication, but as central artefacts of
the software development process. Various recent research
approaches take the idea of using models as central artefacts
one step further by using models at runtime to cope with
dynamic aspects of ever-changing software and its environ-
ment. In this article, we analyze the usage of models at run-
time in the existing research literature using the Systematic
Literature Review (SLR) researchmethod. Themain goals of
our SLR are building a common classification and surveying
the existing approaches in terms of objectives, techniques,
architectures, and kinds of models used in these approaches.
The contribution of this article is to provide an overview and
classification of current research approaches using models at
runtime and to identify research areas not covered by models
at runtime so far.
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1 Introduction

In traditional software engineering, the development process
is divided into several activities or phases reaching from
requirements specification over software construction to
deployment and maintenance. These software development
phases and software execution are strictly separated from
each other, and modification of running software is done by
re-deployment of the changed software components, e.g. in
binary or bytecode form. However, in recent years, the dis-
tinction of software development and execution blurs, for
example because modern applications have to adapt them-
selves according to changing requirements and execution
environments while they are up and running [102]. A key
idea to overcome limitations in flexibility is to reuse model
artefacts from the software development phases at runtime
[20,34]. Information of the running system is fed back to the
software models to support reasoning at runtime and to take
corrective actions at the model level. Furthermore, perform-
ing changes at the model level of those models at runtime
improves the synchronization between design artefacts and
the implementation of the software system [107]. To realize
such a connection between a running system and its models,
the running system needs a self-representation of itself based
on models which are causally connected to it [34,166].

Based on the mentioned utilization of models, a runtime
model is defined as abstraction of a running system that is
being manipulated at runtime for a specific purpose [27]. An
alternative definition is given by Blair et al. [34] as causally
connected self-representation of the associated system that
emphasizes the structure, behaviour or goals of the system
from a problem space perspective.

Different challenges might arise when using software
models at runtime to realize dynamic software system behav-
iour. For instance, one might be required to choose an
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adequate adaptation strategy, apply introspection mecha-
nisms to running systems, check the formal correctness of
models, compare models to calculate adaptation operations,
or transformmodels to simplify reasoning, to name just a few
issues that must be addressed. Since there is a wide range of
different softwaremodels andmany application scenarios for
models at runtime, a need for classification in terms of objec-
tives, techniques, architectures and kinds of models used at
runtime arises.

In this article, we inspect the existing research liter-
ature which tackles the topic of models at runtime and
extract information regarding the aforementioned classifica-
tion. We accomplish this by performing a Systematic Litera-
ture Review (SLR) [150,151] consisting of an initial search
phase, multiple filter phases with well-defined selection cri-
teria and a final classification phase. For each classifica-
tion, we present relevant approaches found in our literature
review to provide a self-contained overview of the topic.
Regarding selection criteria, we categorized the approaches
into included, non-detailed, and excluded literature, where
approaches of the non-detailed category are presented only
in short form for the sake of completeness. The result of
our SLR is an overview of current research approaches using
models at runtime, aswell as a common classification scheme
focussing on the objectives, techniques, architectures and
kinds ofmodels used in these approaches.We also categorize
the actions after runtime model analysis documented in the
literature, as an important aspect of runtime model architec-
tures (i.e. how runtime models are connected to the running
system). Finally, we summarize the existing empirical evi-
dence provided for models at runtime in the literature and
identify research areas not covered in detail by models at
runtime so far.

This article is structured as follows: In the next section,
we will describe our research method to identify the relevant
literature using models at runtime. In Sect. 3, we present our
research results by explaining the identified classification and
describing relevant approaches according to this classifica-
tion. In addition, we discuss possible actions after model
analysis as well as empirical evidence of our identified run-
time model approaches. In Sect. 4, we discuss our literature
researchmethod and results in terms of possible inaccuracies,
precision of the results, possible distortions by selection cri-
teria, perspectives, and limitations of this study. Finally, we
conclude in Sect. 5.

2 Research method

The Systematic Literature Review (SLR) method is a well-
defined and rigorous method of identifying, evaluating, and
interpreting all available research relevant to a particular
research question, topic area, or phenomenon of interest

[150]. SLRs aim to present a fair, unbiased, and credible
evaluation of a particular research topic [150]. This research
has been conducted as an SLR by following the guidelines of
Kitchenhamet al. [150,151],who propose threemain phases:
Planning the review (identify themain rationale for undertak-
ing the review and develop a review protocol), executing the
review (conduct the review by executing the planned review
protocol from the previous phase), and reporting the review
(present the results of the review and its dissemination to the
interested parties). Phases involved in the SLR appear to be
sequential but they are usually iterative, e.g. search terms,
inclusion criteria, and exclusion criteria can be refined while
the review is in progress. In this section, the review plan (first
phase) and the review execution (second phase) of our SLR
are described. The outcomes of the third phase, the reporting
phase, are presented in Sect. 3, where we report our research
results, and in Sect. 4, where we discuss these results.

We first introduce our general search strategy and then the
research questions to be answered by our literature analysis.
Next we define our literature selection criteria to extract rele-
vant publications regarding models at runtime. We then give
a detailed insight into our literature selection process. The
key idea of finding relevant literature is to perform an initial
search, filter the results, check references of selected pub-
lications, and finish the search by grouping and duplicate
elimination.

2.1 Search strategy

Our SLR is based on an electronic search in two publica-
tion databases: The Association for Computing Machinery
(ACM)Guide to Computing Literature (accessed through the
ACMDigitalLibrary1) and the IEEEXploreDigitalLibrary.2

It aims to provide a comprehensive coverage of bibliographic
citations from all major publishers in the field of computing.
At the time of this SLR, the ACM Guide to Computing Lit-
erature contained 2,150,450 and the IEEE Xplore Digital
Library 3,511,057 bibliographic records. The methodology,
which is exploited for comprehensive coverage, is to perform
an advanced search in these databases for accumulating bib-
liographic citations from the major publishers in computing.
The search was based on the titles and abstracts of the arti-
cles. The rationale behind using this particular method is to
find the biggest share of scientific citations that are relevant
to answer the specific research questions listed below.

This search strategy might inevitably miss some useful
citations, for instance, because someminor publishers are not
included in these databases and some (especially) older pub-
lications have a very short or not very meaningful abstract. In
response to this problem, so-called “snowballing” [42] (i.e.

1 See: http://dl.acm.org/.
2 See: http://ieeexplore.ieee.org/.
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Table 1 Overview of the
applied literature selection
criteria

Inclusion criteria (covered in detail)

• Articles found in the ACM Guide to Computing Literature or IEEE Xplore Digital Library

• Articles found through snowballing till August 2013, the time this study was conducted

• Articles published in peer-reviewed journals, conferences, and workshops

Inclusion criteria (covered in less detail)

• Doctoral dissertations

• Publications that use models at runtime but do not discuss the runtime aspects of them (e.g. execution
of a static state machine model)

• Publications that contain models not related to software development (e.g. mathematical models, thermal
models of hardware)

• Summary or survey publications because of their reduced level of detail (we discuss those in Sect. 3.9,
if appropriate)

• Publications focussing on user interface generation/adaptation, as they are too specific

Exclusion criteria

• Books, web sites, technical reports, and master theses

• Publications without abstracts

• Publications in which the usage of runtime models is not clearly understandable (e.g. they have a
different focus and the model usage is covered in insufficient detail)

following the references of articles found during the search)
is performed in an iterative way to identify additional cita-
tions. That is, the bibliographies of every selected publica-
tions are checked for useful articles that are missed in the
initial search. Snowballing is performed until a convergence
is reached and no more new relevant articles are found.

2.2 Research questions

By performing a systematic literature review consisting of
multiple phases, we are looking for answers to the following
research questions:

• For what purposes are models used at runtime?
• Which techniques and kinds of models are used when
processing models at runtime?

• Which problems are addressed by using models at run-
time?

• Which architectures exist for processing models at run-
time?

• Which researchmethods aremost frequently used for eval-
uating runtime model approaches? Which empirical evi-
dence has been reported?

Answers to these research questions help us to provide
an overview of current research approaches and to identify
research areas not covered in detail by models at runtime so
far. Furthermore, answering the aforementioned questions
enables us to build a common classification for objectives,
techniques, architectures and kinds of models used at run-
time.We introduce our resulting classification inSect. 3when
presenting our research results.

Initial

search

August 2013
ACM: 754 hits
IEEE: 465 hits

Abstract

filtering
215 remaining

Detailed

filtering

119 detailed
75 not detailed
21 dismissed

Snowballing
100 new:
- 16 not detailed
- 27 dismissed

Elimination
Remove duplicates
Strict selection

Finalization

Classification,
Grouping:
- 122 detailed
- 87 not detailed
- 33 dismissed

Fig. 1 The literature search process

2.3 Literature selection criteria

To conclude efficiently about our research questions, we
defined selection criteria which help to decide whether a
publication will be excluded, included (covered in detail),
or covered in less detail when applying our search process.
Table 1 gives an overview of these selection criteria. Regard-
ing snowballing mentioned in the table, we included related
work from all publications which are covered in detail.

2.4 Literature search process

The literature search process is divided into six steps: An ini-
tial search phase, two filtering phases, a snowballing phase,
an elimination phase, and a finalization phase. The process
is depicted in Fig. 1 and shows all interim results between
the phases.
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In the initial search phase, an appropriate search string
had to be found, capturing all relevant publications regard-
ing models at runtime. Our search string is based on the
Models@run.time workshop proceedings [24–29], the pub-
lications presented in the Dagstuhl Seminar 11481 [13] and
the publications in special issues concerned with models at
runtime (the last from March 2013 [44]). Our goal was that
every relevant paper presented in this workshop would be
covered by our search. As a result, the following search terms
either in abstract or title of a publication led to an immediate
inclusion in the search results:

P = {models at runtime,models for
runtime, runtime models}

Alternatively, a conjunction of the following terms in the
abstract led also to inclusion:

Q = {model, meta-model}
R = {runtime}
S = {dsl, model-driven, meta-model-driven, model-based,
dsml, system at runtime, application model, abstract
model, engineering model, architectural model, feature
model, behaviour model, model of system, inferred model,
dynamic model, runtime state}

Hence, the overall search string can be combined in the fol-
lowing way:

Result = P ∨ (Q ∧ R ∧ S)

We were aware of multiple spellings of words and abbre-
viations when applying our search string (e.g. runtime, run-
time, run time). This led to a search string with a total length
of 1495 characters. The initial search ended on 7August 2013
and yielded 754 publications in the ACMDigital Library and
465 publication in the IEEE Xplore Digital Library.

The second phase addressed the elimination of duplicates
introduced by the two publication databases and the filtering
of the publications by applying the aforementioned selection
criteria on their abstracts (as far as possible). In case of uncer-
tainty regarding inclusion/exclusion, articles were included
for further analysis in subsequent phases. In this phase, a
first classification was created as a basis for further refine-
ment throughout the literature search process. The filtering
yielded 215 remaining publications.

In the next phase, a more detailed filtering was applied by
inspecting the whole content of the remaining 215 publica-
tions, applying the literature selection criteria and classifying
them into three groups: 119detailed (clearly fitting the topic),
75 not detailed (fitting the topic, but insufficiently detailed
or too specific), and 21 dismissed (not fitting the topic). Fur-
thermore, the initial paper classification of the previous phase
was updated for further refinement.

The fourth phase addressed the analysis of the references
of the publications inspected in detail. This snowballing
phase added 100 new papers to our search results, out of
which 16 where categorized as not detailed and 27 as dis-
missed.

The first step of the next phase was to remove duplicates
introduced by the snowballing phase. In the second step,
we revised our aforementioned group clustering by strictly
applying the selection criteria to papers includedunder uncer-
tainty before.

In the last phase, we organized our overall search results
by grouping same approacheswhichwere publishedmultiple
times, leading to distinct groups consisting of 122 detailed,
87 non-detailed, and 33 dismissed publications. Studies hav-
ing multiple published descriptions (collected in one distinct
group) are included only once by using the most detailed
and up-to-date version of the study. After applying elimina-
tion and finalization, only 15 out of the 100 papers added
by snowballing remained in the results, giving us confidence
that our search string captured the majority of the relevant
literature.

3 Research results

In this section, we outline the problems tackled by models at
runtime as well as the identified objectives, techniques, kinds
of models, and architectures used in combination with run-
time models. Furthermore, we discuss summary and survey
publications identified by our literature research in Sect. 3.9.

3.1 Problems

In our SLR, we identified several problems to be resolved by
the usage of models at runtime. Figure 2 gives an overview
of these problems by grouping them into different cate-
gories. The categories are described top-down according
to the picture in the text below. In the discussion of the
approaches in the subsections below, we explain for the indi-
vidual approaches which of these problems they address.

Inaccurate predictions result from unknown requirements
evolution [30,215,227,274] and associated change impacts
as well as difficult performance predictions. In a changing
environment, it is no easy task to monitor and visualize the
impact of adaptation rules which are applied when a system
should meet new requirements. Models at runtime help to
visualize such change impacts by analyzing affected soft-
ware parts at the model level and checking whether spec-
ified application constraints have been violated [261]. Fur-
thermore, interconnected runtime models can be traversed to
highlight influenced models and their elements if one model
changes at runtime [229].Changing and heterogeneous envi-
ronments also complicate predictions, as they add some level
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Problems addressed by models at runtime

Combinatorial explosion of system variants

Checking or enforcing

rules or constraints

Error localization

Hand-written artefacts,

manual human actions
Low reusability
Low maintenance

Low abstraction

Changing/heterogeneous

environments

Inaccurate predictions

Performance

Change impacts

Requirements evolution

Fig. 2 Problems addressed by models at runtime

of uncertainty regarding stability and satisfaction of context-
related constraints. In addition, to cope with these changing
and heterogeneous environments, often flexible adaptation
is needed by system engineers [117], but many approaches
mix adaptation logic with application behaviour by using
conditional expressions and other low-level programming
features, leading to bad scalability. Models help to increase
such needed flexibility in adaptation to tackle problems of
inaccurate predictions and changing environments, e.g. by
using queueing models and Markov models to predict tim-
ing and future states [47,51,81,104,184], Dynamic Deci-
sionNetworks for enhanceddecision-making in self-adaptive
systems [21,22] or architecture models to analyze system-
wide change impacts [101]. Increased adaptation is one main
objective of models at runtime and is discussed in Sect. 3.3.1.

Creating hand-written artefacts or performing otherman-
ual human actions is often time-consuming as well as
error-prone and leads to low abstraction, maintenance, and
reusability. A common solution to solve these problems is to
use MDE techniques to auto-generate software artefacts and
reconfiguration scripts responsible for switching between
runtime configurations [87,182]. Architecture models are an
example of information sources when calculating reconfigu-
ration actions, especially in combinationwithmodel compar-
ison techniques to compare a target architecture model with
the model of the current system configuration. Model com-
parison and other model processing techniques are discussed
in Sect. 3.4.

As for error localization, it is hard to predict where errors
will occur in highly dynamic environments. Runtime mod-
els provide system operators with enhanced capabilities to
localize faults in behavioural models like workflows [195].
Beyond that, with runtime models faults can not only be
localized, but also eliminated by architecture-based self-
repair [52].

A problem commonly addressed by models at runtime is
checking or enforcing rules or constraints. That is, the model
contains or implies rules or constraints, such as consistency
requirements with the running system or other artefacts or

business policies that should not get violated. Techniques
operating on runtime models are used to check (monitor) or
even enforce these rules or constraints at runtime.

Another problem addressed by models at runtime is the
combinatorial explosion of possible system configurations
when calculating the most rewarding adaptation plan [178–
181], which can further be complicated when checking a
great number of model elements at runtime because of
increased execution time andmemory occupation [81]. Com-
binatorial explosion can be tackled by using aspect-oriented
programming to model system variation points instead of
concrete configurations [178–181]. Feature models describe
a hierarchical composition of system parts and declare them
either as mandatory or optional, simplifying adaptation at
runtime by reducing the set of possible system part com-
binations. Filieri et al. [81] propose a pre-computation step
regarding Discrete Time Markov Chains to tackle the prob-
lem of state explosion which occurs in analyzing the model.
They use transition variables that are the parameters of the
model whose value becomes known only at runtime. The
output produced by the pre-computation step is a set of sym-
bolic expressions which can easily be evaluated at runtime
by replacing the variables with the real values gathered by
monitoring the system, thus shifting the cost of model analy-
sis to design time. Adaptation scenarios and strategies are
discussed in detail in Sect. 3.3.1.

3.2 Classification overview

Early approaches using models at runtime focussed on
architecture-based mechanisms to realize monitoring and
adaptation [95,96,98]. The ideas further evolved from early
middleware-based adaptation approaches [63,65,74,152,
210] to other topics like error handling [135,145] and model
execution (see Sect. 3.4.6). Recent approaches focus on goal-
and requirement-oriented aspects [53,215,260]. There has
been a recognizable shift from simple adaptation interests
to wider application fields and more goal-oriented and user-
centric approaches over the last years [30] (see Sect. 4.4).
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Models at

runtime

Kinds of

models

(excerpt)

Abstract

Syntax Tree

Architecture

model Business

process model

Context

model

Feature &

Aspect model

Observation

model

Performance

model

RBAC &

Safety modelState machine

model

Task

model

Objectives

Adaptation

Abstraction
Consistency,

conformance

Error

handling

Monitoring,

simulation,

prediction Platform

independence

Policy

checking and

enforcement

Techniques

Autonomic

control loop

Introspection

Model

conformance

Model

comparison

Model

transformation

Model

execution

Architectures

Repository

Communication

middleware

Model-aware

middleware

Local

dataflow

Monolithic

Fig. 3 Overview of objectives, techniques, kinds and architectures when using models at runtime

This shift leads to a great variety of objectives (e.g. adap-
tation, monitoring, error handling) which are achieved by
using different kinds of models at runtime (e.g. architectural
models, goal models). Architectures and techniques must be
selected accordingly to support the realization of the objec-
tives with their corresponding kinds of models.

Since we not only want to identify research areas not cov-
ered so far, but also provide a comprehensive overview for
researchers who are new to this topic, we decided to analyze
the mentioned aspects (objectives, techniques, kinds of mod-
els, architectures) because they bring answers to fundamental
questions:

• What do we need models at runtime for? (objectives)
• Which models can be used at runtime? (kinds of models)
• How can we realize systems using models at runtime?
(techniques)

• Where must models reside to support the running system?
(architectures)

A discussion about the interconnections of these aspects is
given in Sect. 4.2. Figure 3 gives an overview of the classifi-

cation according to these aspects. Each shown aspect (archi-
tectures, kinds, techniques, objectives) is further divided into
several parts to refine the description of the associated aspect.
These parts are covered in detail in the subsequent subsec-
tions. That is, the figure serves as an overview of our research
results derived from our search phase described in Sect. 2.4.

3.3 Objectives

In this section, we observe the objectives pursuedwhen using
a system which utilizes models at runtime. We extracted the
objectives fromapproaches identified by our literature review
by collecting the objectives stated by the authors and group-
ing similar objectives into classes. This process resulted in
seven classes of objectives addressed by runtime model (see
Fig. 3):

• Adaptation: Change the system according to changing
environment and requirements.

• Monitoring, simulation, prediction:
– Monitor the systembyusingmodelswhich help to trace
application behaviour.
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– Simulate changes at the model level to analyze their
consequences.

– Predict system properties like performance by analysis
at the model level.

• Abstraction: Interact with the system by using models
which are closer to the problem space.

• Platform independence: Provide platform-independent
views on the system under observation.

• Consistency and conformance:
– Avoid contradictions between different software parts
and/or (development) artefacts.

– Ensure conformance to other models or integrity con-
straints in general.

• Policy checking and enforcement: Adhere to policies like
(real-)time and security regulations.

• Error handling: Enable model-based debugging, fault
localization, tracing, and self-healing.

In the following sections, we will discuss each of the classes
in detail and concludewith an overviewof approaches related
to each class of objectives (we put abstraction and platform
independence into a single section since they are closely
related).

3.3.1 Adaptation

One main objective of using runtime models is to ease adap-
tation in environments with continuously changing require-
ments.When adapting a system, one challenge lies in proving
the correctness of the adaptation within a composed system.
Inverardi et al. [144] propose a theoretical assume-guarantee
framework which analyzes whether certain invariant prop-
erties are violated. Their framework can be applied at dif-
ferent levels of abstraction spanning from code to software
architecture. For the development process itself, Inverardi
andMori [140,143] propose a software development process
to support consistent evolutionswith the help of contextmod-
els, features models, and a control loop (see Sects. 3.5 and
3.4.1, respectively). Goldsby et al. [113] propose AMOEBA-
RT, a model checker for adaptive systems which collects
runtime state information via aspect-oriented techniques and
checks for violations of formal specifications. Like many
other approaches, AMOEBA-RT uses an automaton-based
approach to determine whether the runtime information sat-
isfies certain properties specified in temporal logic (model
conformance is discussed in Sect. 3.4.3).

In our literature search, we spotted five major scenarios
addressed by adaptation through runtime models: User inter-
face adaptation, requirement changes, contextual changes,
QoS enforcement, and change impact analysis. These sce-
narios and appropriate strategies to realize system adaptation

Adaptation

Strategies

Parameter adaptation

Structural adaptation

Autonomic control loop

Scenarios

Change impact analysis

QoS enforcement

Contextual change

Requirements change

User interface adaptation

Fig. 4 Adaptation scenarios and strategies

are depicted in Fig. 4. The scenarios are described in subse-
quent paragraphs, while the strategies relate to techniques
are discussed below in Sect. 3.4.1.

User interface adaptation User interface adaptation address-
es dynamic user interface interaction, layouting, andmanage-
ment ofmultiple systemperspectives.Models at runtime help
to realize such scenarios by describing possible interaction
flows, layout constraints, and system parts to be personal-
ized by the user. Garzon and Cebulla [99] use a combination
of three models to support automatic adaptation by learning
from user interactions: A system model (describes internal
behaviour), an interactionmodel (describes human-machine-
interaction), and a personalization model (links system and
interaction model and sets constraints for personalization).
Other approaches use user interface adaptation for genera-
tion of multimodal interaction [14,78,80,194,245], layout-
ing/scaling/sizing [32,79,254], multiple system perspectives
[237], user interface synchronization [35], self-explanation
of user interfaces [89,93] and contextual user interface adap-
tation [36,66,94,222,236,270]. As mentioned earlier, for
these approaches we will not go into detail.

Requirements and contextual changes Requirements and
contextual changes address needed modifications to meet
requirement evolution and changes in operational environ-
ments. Main challenges in triggering adaptation lie in find-
ing out alternative system configurations and analysis of
found configurations regarding benefits compared to the cur-
rent system state. Models at runtime help to decrease the
amount of possible system configurations by modelling vari-
able parts of the system at runtime [140,143]. An example
for such models are feature models which describe a hierar-
chical composition of system parts and declare them either
as mandatory or optional, simplifying adaptation at runtime
by reducing the set of possible system part combinations.
For the adaptation process itself, the strategies depicted in
Fig. 4 are used to drive the transition between system con-
figurations. Section 3.4.1 gives detail descriptions of these
strategies.

A requirements-aware system needs a formal representa-
tion of the requirements to process them at runtime. The
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requirements language RELAX [1,267] is a declarative
requirements language for self-adaptive systems which sup-
ports the explicit expression of environmental uncertainty in
requirements. RELAX is based on fuzzy branching temporal
logic and provides modal, temporal and ordinal operators to
express uncertainty. Example operators are SHALL to define
functionality the systemmust always provide (invariants) and
MAY/OR to define alternatives.

Tomanage runtime adaptation,Georgas et al. [101] build a
graph of a system that captures historical configurations and
corresponding behaviours of a system. The adaptive process
is augmented with meta-data such as frequency of entered
configurations and how long a system remained in particu-
lar configurations. An architecture runtime model supports
the system and is responsible for the initial instantiation of
the system and its future evolution. The historical graph con-
sists of system configurations (nodes) and transitions (edges)
between these configurations, whereas the transitions store
architectural differences between configurations in a bidirec-
tionalway, thus enabling rollback and rollforwardoperations.
A similar rollback mechanism is proposed by Barbier [16].

To meet requirements and contextual change scenarios,
Floch et al. [83] use a middleware-based approach in combi-
nation with architecture runtime models to control the adap-
tation mechanism. The middleware transforms architecture
models into runtime representations and finds all alterna-
tive components that can be plugged into component frame-
works, building a set of possible system variants. The utility
of each variant is calculated and reconfiguration is triggered
if a variant shows higher profit than the current configura-
tion. This enables the application to adapt itself to changing
user needs and operating environments, demonstrated by the
authors with mobile applications. A similar approach is used
by Taconet et al. [246] which uses new context data collec-
tors dynamically. Context-awareness models are used and
updated at runtime to fulfil new application requirements.
MDE is used for guiding context-aware designers in the spec-
ification of the monitoring of distributed context sources.

Elkorobarrutia et al. [76] use state machine models as a
basis for component reconfiguration to enable self-healing
mechanisms. In their approach, state machine models serve
as interfaces between a state machine interpreter and the
component (seen as blackbox), enabling manipulation of the
model at runtime to alter component behaviour. McQuig-
gan and Lester [174] realize intelligent tutoring systems by
using dynamic self-efficacy models containing data from
a special feedback process. Nguyen and Colman [191]
use feature models at runtime to enable web service cus-

tomization for customers, leading to a manageable num-
ber of system configurations and flexibility in requirement
changes.

Inverardi andMori [141,142] propose a framework to aug-
ment a system with new requirements arising at runtime.
A requirement evolution is declared inconsistent whenever
new requirements do not interact correctly with currently
deployed ones. At design time, a context model is defined
which describes the environment that is beyond the control
of the system but may influence future system evolutions. An
automatic process updates the model at runtime to reflect the
current environmental situation. When a new requirement is
specified, a new system variant is compiled. By using reflec-
tion, the new variant is loaded and the entry method invoked
to put the new variant in action.

As pointed out in Sect. 3.2 and discussed in Sect. 4.4,
recent research approaches use high-level goal- and require-
ments models to drive the adaptation of the system. Section 4
gives an overview of approaches using these kinds of models
to cope with requirements changes during runtime.

Quality-of-Service enforcement In the scenario of Quality-
of-Service (QoS) enforcement, the satisfaction of non-
functional properties is addressed, e.g. a certain level of per-
formance or reliability. This is especially requiredwhen deal-
ing with volatile operating environments and concrete tim-
ing constraints. By using models at runtime, possible future
states of the system can be predicted when environment
changes occur, and such states serve as a basis to analyze
whether required conditions can be met in case of environ-
mental change. QoS-related models often rely on stochastic
calculations and outline data flows between system compo-
nents and dynamic system behaviour to enable simulation
and point out possible bottlenecks. Examples of such mod-
els are queueing models (predict timing properties), Markov
models (analyze probability of future states) and runtime
representations of architecture models. Figure 5 gives an
excerpt from non-functional requirements which are satis-
fied through system adaptation. The satisfaction of these
non-functional requirements is discussed in the following
paragraphs.

In case of the non-functional property performance,
Caporuscio et al. [47], Ardagna et al. [12], and Ghezzi and
Tamburelli [104] use Queueing Networks as models to man-
age performance satisfaction. In the approach of Ardagna
et al. [12], a monitor collects data of the executing system
and checks the model whether non-functional requirements
are violated. Based on the collected results, the approach sup-

Fig. 5 Excerpt from
non-functional requirements
that are tackled by models at
runtime

Non-functional requirements

Performance Reliability Efficiency Effectiveness Security Interoperability Usability
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Table 2 Overview of
approaches related to the classes
of identified objectives

Identified objective Related approaches

Adaptation User interface adaptation: [14,32,35,36,66,67,78–80,89,93,
94,99,161,194,209,222,230,236,237,245,254,270]

Requirements and contextual changes: [16,76,83,141,142,174,
191,246]

Quality-of-Service (QoS) enforcement: [5,6,12,45,47–49,61,
104,137,175,185,283]

Change impact analysis: [203,229,261]

Monitoring, simulation, prediction [19,31,62,77,98,103,105–108,114,115,136,160,168,169,171,
177,184,198,199,207,217,231–235,255,257,258,278]

Abstraction and platform independence [105–108,139,167,248,250,255,257,258]

Consistency/conformance checking
and enforcement

[11,14,37,40,79,92,131,156,211]

Policy checking and enforcement [15,18,123,125,132–134,138,176,206,219,220,242,272,
279–281]

Error handling [52,90,96,121,122,124,135,153,187,195,196,205,228,243,
265, 271,273,275]

ports reasoning on adaptation strategies. To ensure reliability,
Cardellini et al. [49] meet QoS requirements in volatile oper-
ating environments by using a behavioural model of the sys-
tem updated at runtime by a monitoring activity. This model
is used to calculate a re-arrangement of available services
to fulfil performance and reliability requirements. Parame-
ters for such a re-arrangement are derived from Service-
Level-Agreements (SLAs) negotiated with service clients
and providers. Calinescu et al. [45] propose the framework
QoSMOS which utilizes Markov models within a feedback
loop (see Sect. 3.4.1) to determine quantitatively the reli-
ability and performance quality metrics of service-based
systems. The monitoring part of the loop determines per-
formance, reliability and workload of services and updates
Markov models accordingly. The results are analyzed with
the help of specified QoS requirements and changes are
planned in terms of changing the implemented workflow or
modifying resource allocation. These changes are then exe-
cuted bymodifying parameters, starting, stopping, ormigrat-
ing virtual machines or using dedicated resource manage-
ment mechanisms.

For efficiency and effectiveness, an example is the
MADAMmiddleware which automates adaptation decision-
making in reflective component-based systems to maximize
the utility of an application, e.g. through minimum resource
consumption, maximum resource consumption (likely to be
best performance) or maximum efficiency (ratio utility to
resource consumption) [5,6]. The approach is described in
more detail in Sect. 3.6.3. Security policies can be enforced
with runtime models like graphs [197] or safety models
[219,220] which help to manage the adaptation of the run-
ning system so the policies stay enforced in evolving system
configurations. Policy checking and enforcement is further
discussed in Sect. 3.3.5.

Interoperability can be achieved through adaptation by
dynamic generation of mediators which translate actions of
a networked system to actions of another networked sys-
tem [23,130]. Reflective middleware like OpenORB [10,65]
or ReMMoC [116,118] enable inspecting and adapting
communication and interoperability functionalities to cope
with distributed changing environments. Starlink [39,164]
and OverStar [119] offer similar interoperability mech-
anisms by using abstract network messages and over-
lay networks. Dynamic code generation and middleware
approaches are further discussed in Sects. 3.7.4 and 3.6.4,
respectively.

Usability improvement is mainly achieved by dynamic
adaptation of user interfaces. As described in Sect. 2.3, we
are not going into detail about these approaches. Table 2
gives an overview of approaches relying on user interface
adaptation.

To improve tool support for non-functional requirements
management in general, Röttger and Zschaler [212] propose
the use of context models to make the specification of non-
functional measurements independent of their application
in concrete system specifications. Context models allow an
independent person—themeasurement designer—to provide
measurement definitions at different levels of abstraction. A
measurement is a non-functional dimension that can be con-
strained to describe a non-functional property. Transforma-
tions between context models (i.e. refinement of the models)
together with measurements and the context models them-
selves can then be used by the application designer who is
able to focus on the business logic when developing an appli-
cation.

Other approaches usemodels in combinationwith dynam-
ic service selection [185], QoS mode switching [61], para-
meter/component variation [5,6,48], OCL constraints [137],
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negotiation of QoS-aware components [175] and distrib-
uted resource measuring [283] to cope with QoS require-
ments. Furthermore, Calinescu et al. [45] give a detailed
overview over various QoS-related approaches in gen-
eral.

Change impact analysis Change impact analysis addresses
detecting affected system parts in case of requirements or
environmental changes as well as the consequences arising
from transitions to future states (e.g. check whether pre-
defined constraints will still hold or if the system needs
to perform a structural adaptation). Furthermore, changes
within models (i.e. changes of the models’ elements and
their relationships) are also target of impact analysis. Run-
time representations of design models can be used to identify
connected components in order to detect affected compo-
nents, especially when using architecture models and infor-
mation about service compositions. Our research identified
various approaches which tackle this problem of difficult
impact predictions. Sindhgatta et al. [229] introduce a frame-
work to automatically identify possible changes in MOF-
compliantmodels. At runtime, this framework performs fine-
grained analysis to identify impacted models and their ele-
ments if model changes occur. Users have the option to
apply or reject adaptation suggestions and view incremen-
tal impact of their decisions on affected artefacts. Selected
changes are analyzed and propagated across the models. A
similar approach of impact analysis is introduced by Waig-
nier et al. [261] where each adaptation is first tested at the
model level to check that no application property is broken.
The reconfiguration is executed by a six-step control loop
where events are propagated to the model level and ana-
lyzed. Adequate adaptations are then executed on an archi-
tecture description model, analyzed and applied to the run-
ning system by adding or removing components or bindings.
Another approach uses graph-based application-level perfor-
mance models and online history-based models instead of an
autonomic control loop to analyze impacts [203] (the auto-
nomic control loop technique is discussed in Sect. 3.4.1).
Goldsby et al. [110,112] generate models of possible tar-
get systems for different environmental conditions. These
models help developers to identify the functional and non-
functional trade-offs between the models when adapting the
system.

As a summary, relating to the problems introduced in
Sect. 3.1, adaptation is mainly used to solve the problems of
inaccurate predictions and changing environments. In the dis-
cussed approaches, architecture models and prediction mod-
els like queueing andMarkov models are used to tackle inac-
curate predictions (e.g. change impacts and performance)
and changing environments. For addressing the combina-
torial explosion problem, feature models are used to tame
numerous possible system configurations.

3.3.2 Monitoring, simulation, and prediction

Besides adaptation, runtime models can also be used for
monitoring a system, simulating future evolutions by ana-
lyzing impacts on the model level and predicting system
properties like performance and reliability in case of sys-
tem reconfiguration. Models enable monitoring, simulation
and prediction at a higher abstraction level (closer to problem
space), addressing the problem of low abstraction resulting
from hand-written artefacts (see Sect. 3.1). This is especially
true when using architecture models at runtime to monitor
system behaviour from a global perspective. Monitoring is
also related to the problem ‘checking or enforcing rules or
constraints’ introduced in Sect. 3.1, if systems are monitored
for checking specific rules or constraints. More specifically,
monitoring, simulation, and prediction are closely related to
adaptation sincemost adaptation techniques requiremonitor-
ing of the running system. In addition, simulation and pre-
diction are used as input for adaptations, for instance, in the
analysis and planning phases of the autonomic control loop
technique described in Sect. 3.4.1. Monitoring, simulation,
and prediction are discussed in individual sections below.

Monitoring LeDuc et al. [158] propose an adaptivemonitor-
ing framework namedADAMOthat tackles different quality-
of-information (QoI) aware data queries over dynamic data
streams, whereas QoI encompasses lifespan, precision, gran-
ularity and types of monitoring data. The framework allows
access to dynamic data streams for multiple clients with dif-
ferent QoI needs as well as generation and configuration of
appropriate elements in the monitoring system according to
QoI constraints. Furthermore,themonitoring system is adapt-
able to resource constraints and able to manage data queries
in a static or incremental way.ADAMOrelies on aQoImodel
which formalizes data sources, monitoring queries and sys-
tem resources and uses constraint solving to configure data
sources according to clients needs and resource constraints.

Various approaches use the tool SM@RT (Supporting
Models at RunTime) [136,231–235,278] to maintain the
causal connection between the system and an architec-
ture model. In this tool, system changes lead to corre-
sponding architectural changes in a bidirectional way. This
is achieved by creating a runtime architecture infrastruc-
ture (RAI, [198,199]) without modifying the target sys-
tem, using QVT (Query-View-Transformation) bidirectional
model transformations. The resulting architecture model
enables monitoring and controlling of the system at a high
abstraction level.

Bidirectional model transformation is also used in approa-
ches byGiese et al. [105–108] andVogel et al. [255,257,258]
where Triple Graph Grammars (TGG) are used for support-
ing adaptation and architectural monitoring. In the TGG
approach, a sourcemodel (low-level, formonitoring or adapt-
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ing the system) is causally connected to one or more target
models (high-level, specific views on the system) while syn-
chronization is declaratively specified by TGG rules at the
meta-model level for the source and target models. Lehmann
et al. [160] describe meta-modelling of runtime models and
present an adequate meta-modelling process.

A similar three-layered approach is proposed by Cheng
et al. [62] andGarlan et al. [98]:A runtime layer observes sys-
tem properties and performs low-level adaptation operations,
amodel layer interprets observeddatawith the help of analyz-
able architecturemodels and checks for constraint violations,
and a task layer determines QoS requirements as high-level
representations of computational needs by using desired per-
formance profiles of required services. Architecture models
are represented as graphs of interacting components, increas-
ing the monitoring to a higher level of abstraction.

Other approaches use OCL-based monitoring with pro-
tocol state machines [127,129], consider software compo-
nents as blackboxes with behavioural equivalence checking
[103,177], use Petri Nets to recognize interleaved patterns of
runtime events [217] or introduce dynamic monitor config-
uration by machine-processable quantitative and qualitative
properties [31]. Furthermore, models are also used to exam-
ine execution traces in order to monitor and visualize system
status [168,169].

Simulation Compared to monitoring approaches, only a few
simulation and prediction approaches have been proposed
in the models at runtime literature. With regard to simu-
lation, Beltrame et al. [19] enable effective simulation and
debugging throughmodel switching at runtime,whichmeans
that less accurate system models are used for uninteresting
sections of the simulation and accurate system models for
system parts under more precise analysis. Tan et al. [247]
use automata and code generation to monitor the system
and use a simulator to run a system model together with
a monitor model for design-level validation in addition to
code-level runtime validation. In the approach of Redlich
and Gilani [207] a performance model together with runtime
performance parameters of business processes (measured by
events) are fed into a simulation engine. The simulation per-
forms better prediction than techniques using historical data
because structural business process information is taken into
account. With the results, new business process models can
be composed which are independent from a specific business
process execution environment. Weiss et al. [264] propose
embedding adaptation-related information in software com-
ponents. The components of the design model are enriched
with self-descriptions which provide information at runtime
that is necessary for adaptation decisions. An iterative devel-
opment based on model transformation with simulations and
model feedback enables the definition of the adaptation and
the refinement of the design of the self-adaptive system.

Prediction With regard to prediction,Mos andMurphy [184]
give performance predictions based on UML models cre-
ated dynamically by monitoring and analyzing a running
system. UML models are enhanced with performance indi-
cators and are based on static and dynamic data to iden-
tify performance hot spots. Created models can be simulated
and predictions derived for different workloads usingQueue-
ing Networks and Markov chains. Models are also used to
increase the efficiency of the monitoring process by activat-
ing monitoring only for those components that are respon-
sible for performance problems and deactivate the monitor-
ing of the other components. Muskens and Chaudron [188]
use resource models, behaviour models and scenario speci-
fications to predict the resource consumption of executable
components. Their approach is applicable for component-
based embedded systems and supports diagnosis and repair-
ing. Götz et al. [114,115] propose an approach which opti-
mizes energy efficiency of software systems running on mul-
tiple resources. Optimization ofmore than one resource leads
to higher energy savings since communication costs can
be taken into account. Prediction of energy consumption is
achieved by deriving all possible distributions of the software
on a given set of hardware resources. The system is then able
to reconfigure itself to achieve the lowest energy consump-
tion possible. QoS properties like CPU consumption are the
basis for optimizing energy efficiency at runtime. Epifani
et al. [77] use models dealing with reliability and perfor-
mance at runtime and feed a Bayesian estimator with run-
time data to produce updated parameters. Analyzing the run-
time models enable to predict whether a desired property
will be violated by the running implementation. Nguyen et
al. [192] use Coloured Petri Nets to predict performance in
component-based systems.

The approach introduced by Mathis and Kerbyson [171]
uses an executable SAGE (SAIC’s Adaptive Grid Eulerian
hydrocode) model for dynamic performance prediction of an
adaptive mesh application. We will not go into detail about
this approach as it focusses onHigh-PerformanceComputing
(HPC), outside of the scope of this article, but the approach
demonstrates the broad field of meanings and use cases of
runtime models.

3.3.3 Abstraction and platform independence

An important objective of software models is raising the
abstraction level, regardless of whether used at design
time or runtime. With the advent of model-driven devel-
opment, platform-independent models gained considerable
attention. Similar to monitoring, simulation, and prediction,
approaches described in this section tackle the problems of
low abstraction, maintenance, and reusability resulting from
hand-written artefacts and manual human interventions as
described in Sect. 3.1.

123



www.manaraa.com

42 M. Szvetits, U. Zdun

Running system

Source model
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Target model(s)

MAPE loop

TGG rules
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Meta model(s)

Fig. 6 Simplified view of the TGG approach introduced by Vogel
et al. [257]

One attempt to raise the abstraction level is depicted in
Fig. 6 which shows a simplified version of the aforemen-
tioned TGG approach [105–108,255,257,258]. It achieves
higher abstraction and independence of concrete model
instances by declaring TGG rules at the level of meta-models
for the source and target models. This makes it easier to
analyze and plan corrective actions by applying a Monitor-
Analyze-Plan-Execute (MAPE) loop (see Sect. 3.4.1) to
high-level target models, e.g. architecture models. Adaptive
actions are propagated to the running system by a bidirec-
tional transformation between target models and the source
model which is responsible for modifying system parame-
ters.

Other forms of raising the abstraction level are introduced
by Thonhauser et al. [248,250] to support adaptation of vir-
tual organizations and Ingstrup and Hansen [139] to support
architectural reflection by creating queryable runtime mod-
els out of distributed architectures. Abstraction can also be
achieved by tracing system execution with behavioural mod-
els, as described by Maoz [167].

3.3.4 Consistency and conformance checking
and enforcement

Consistency and conformance checking and enforcement
address the problem ‘checking or enforcing rules or con-
straints’ introduced in Sect. 3.1. In this context, consistency
ensures that there are no contradictions between the differ-
ent parts of a software system and/or software (develop-
ment) artefacts related to the system. Conformance ensures
that a software system meets a specified standard. Consis-
tency and conformance requirements come from different
kinds of sources, such as consistency with or conformance
to design artefacts, valid feature combinations, other mod-
els (e.g. model synchronization) or system integrity policies,
existing software standards, to name just a few sources.Mod-
els at runtime can help to check or enforce consistency or
conformance requirements, as they can make model infor-

mation available at runtime, either about the consistency and
conformance rules or the system artefacts to be checked.
They might also address the combinatorial explosion prob-
lem from Sect. 3.1: For example, using feature models at
runtime, which express valid feature combinations, can help
to tackle the problem of combinatorial explosion regarding
possible feature selections.

Arcaini et al. [11] analyze undesirable behaviours of
implementations and incorrect specifications. The confor-
mance check is done by using Java annotations to link the
concrete implementation to its formal model. The opera-
tional specification—an executable Abstract State Machine
(ASM)—describes the desired system behaviour by provid-
ing a model implementation or model program of the sys-
tem. An AspectJ-based monitor observes the behaviour of
the application and determines its correctness with respect to
the ASM specification working as an oracle of the expected
behaviour. The monitor checks conformance between the
observed and the expected state and produces debugging
traces.

Bodenstaff et al. [37] use runtime models to ensure and
maintain consistency between the running system and under-
lying models for inter-organizational cooperations. Consis-
tency is ensured across different models and within mod-
els. First consistency is checked between the running system
and an interpretation of the models. Consistency can then
be maintained by adapting models or implementations when
contradictions are detected. The check between the model
and the running system is done by event logs which are said
to be consistent if essential parts of the model do not contra-
dict. The event log is thus an abstract representation of the
correct runtime behaviour.

Hoehndorf et al. [131] introduce an approach using three
kinds of ontologies: A task ontology serves as the concep-
tual model for the software, a domain ontology provides
domain-specific knowledge and a top-level ontology inte-
grates the task and domain ontologies. Types and relations
of the domain ontology are combined with elements of the
conceptualmodel through the top-level ontology. Transform-
ing the model of an online shop into an online library then
requires only a change in the domain ontology and its map-
pings. Instances of software models are verified against both
the conceptual model and the domain ontology during run-
time. This can be used to verify constraints on data that is
processed by the software.

Rosenmüller et al. [211] present an approach that inte-
grates static and dynamic feature binding seamlessly, ensur-
ing consistency so that only valid feature combinations can
be selected at compile and runtime. At deployment time,
features are declared to be bound statically or dynamically.
Features that are always bound together are merged into a
binding unit. A feature model is then transformed according
to the binding units, yielding a feature model that encom-
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passes only dynamic variability. This model is used to verify
a given dynamic feature composition before it is used.

Other approaches check conformance and consistency in
user interface adaptation [14,79], by recording messages
exchanged between components and services [40,156] and
by clustering normal data to detect data anomalies [92].

3.3.5 Policy checking and enforcement

Policy checking and enforcement encompass models used
at runtime to cope with policies, such as (real-)time con-
straints, access control and security regulations, or other com-
pliance rules, thus tackling the problem ‘checking or enforc-
ing rules or constraints’ introduced in Sect. 3.1. Different
runtime models help to satisfy such policies: Safety models
describe safety properties of systems, role-based access con-
trol (RBAC) models define access management policies, and
Real-Time-UML (RT-UML) models support the modelling
of timing constraints to be preserved at runtime.

Holmes et al. [132–134] introduce an approach where
monitored information is interactively interpreted and ana-
lyzedwith respect to compliance to regulations, usingmodels
as first-class citizens. These models describe a service-based
system and its system requirements and are used at runtime to
trace back violations. This way this approach also addresses
the problem ‘error localization’ from Sect. 3.1. Information
described in models can be queried and developers are able
to perform modifications on-the-fly and add new model ver-
sions to the running system so newly createdmodel instances
can immediately use the corrected version.Multiple versions
of models are maintained in parallel so that old model ver-
sions can be used until all of their model instances are deleted
or migrated to new versions. Modifications are done via web
services while consistency is maintained by artefact relation-
ships and compliance annotations expressed via dedicated
Domain-Specific Languages (DSLs). Services can be gen-
erated with basic create, retrieve, update, delete, and query
operations.

In the approach of Schneider and Trapp [219,220]
dynamic changes in a system or environment are reflected
based on safety runtime models. They consist of config-
uration models (describe configurations, required/provided
services of a component), an adaptation model (rules to
determine the best configuration), models describing non-

functional service properties (required/provided QoS and
mappings), and safety models (required/provided safety
properties and theirmappings). Required and provided safety
properties are matched throughout a composition tree hold-
ing all required services.

Hummer et al. [138] realize identity and access man-
agement (IAM) in the context of service-oriented architec-
tures by using model information at runtime. RBAC mod-
els are specified by using a DSL and are mapped to source
code artefacts of the software platform via automated model
transformations. Business processes—annotated with DSL
elements—are instrumented with special activities to ensure
compliance to IAM policies at runtime.

RBAC policies can also bemodelled as graph to reason on
architectural changes and maintain enforced policies [197].
A mapping between RBAC policies and a component-based
architecture allows to transform policies into an architec-
ture enforcing them and to analyze the policy enforcement
on the architecture. Furthermore, an access control reasoner
can listen for architectural changes in order to manage the
adaptation of the running system so the policies stay enforced
in the system.

Halfond and Orso [125] use a model-based approach to
detect illegal queries before they are executed on the data-
base. A model of legitimate queries that could be generated
by the application is automatically built at design time. At
runtime, monitoring is carried out to inspect dynamically
generated queries and check them against the built model.
In case of violation, queries are prevented from executing
on the database and reported to developers and administra-
tors. Figure 7 shows an SQL query model extracted from
[125] which defines allowed login queries for guests and
users.

In the approaches of Rammig et al. [206] and Zhao et al.
[279–281] amodel-based acceptance test is introducedwhere
verification is performed at the level of RT-UMLmodels rep-
resenting the systems under consideration. Checked proper-
ties are definedby the notation ofRT-OCL (Real-TimeObject
Constraint Language) while the overall system behaviour
is specified by RT-UML statecharts. RT-UML models and
associated RT-OCL constraints are transformed into Kripke
structures andBüchi automata and then stored in a repository.
At runtime, if a component replacement is requested within
the component architecture, the operating system sends a

SELECT info FROM userTable WHERE

login

login

= ’ guest ’

= ’ β ’ AND pass = ’ β ’

Fig. 7 Example SQL query model by Halfond and Orso [125] to prevent illegal database queries
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request to a verification service which starts verifying by
fetching related Kripke structures and Büchi automata from
the repository. The service answer is Yes, No or Unknown
as decision about accepting or rejecting the requirement for
substitution.

Other approaches perform model-based real-time and
schedulability analysis for embedded systems [123], man-
age physical network equipment [176], ensure security in an
agent-oriented way [272], realize continuous quality assur-
ance of Web services [15], use a model-based timing analy-
sis engine deciding whether a configuration is feasible to
be executed [242], use aspect-oriented programming to inte-
grate security controls within the target system [7], and ver-
ify design models against high-level security requirements
such as secrecy and authentication [18]. Threats can also
be modelled as sequence diagrams which are compared
with system traces to detect undesirable threat behaviour
[263].

3.3.6 Error handling

Runtime models can be used for more efficient error han-
dling in form of debugging, fault localization, tracing, self-
healing and test case limitation and generation. Hence, prob-
lems like ‘error localization’, ‘inaccurate predictions’, and
‘changing/heterogeneous environments’ from Sect. 3.1 are
addressed by approaches reported in this section.

State machinemodels andworkflowmodels are usable for
many of these scenarios because of their expressive nature
in declaring execution and data flows which can easily be
checked against given execution traces, obtained by emit-
ted events or execution logs. Regarding testing, approaches
exist which use state machines for automatic iterative test
case generation [273] and claim refinement models [265] to
estimate the probability of encountering predefined system
states, thus reducing needed test cases.

Simmonds et al. [228] propose an approach for enhanced
recovery in web service applications. Behavioural correct-
ness of conversations within the web service system is moni-
tored and checked against correctness properties specified by
developers. Such properties are transformed into finite state
automata which enable conformance checking of execution
traces of web services described in BPEL. While traversing
the automata, going back and re-planning of the conversation
in case of a fault is possible: Occurred actions are revoked
until an alternative behaviour of the application is possible
(i.e. backtracking the states of the automata).

Fuentes and Sanchez [90] implemented a dynamic model
weaver that can be used for running aspect-oriented models
where aspects are woven and unwoven during model exe-
cution, leading to reconfiguration of the system and taming
combinatorial explosion by well-defined adaptation points.
Designers can also interact with the dynamic model weaver,

Execution
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Compiler

Model’

(Source code)

Code gen.

Model

Design
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Runtime

information’
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information

Debugging

refers to
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Fig. 8 Model layer mappings introduced by Graf and Müller-Glaser
[122]

loading and unloading pointcuts that activate and/or deacti-
vate aspects which results in a more interactive model simu-
lation. Such weavers enable the possibility to test and debug
models before moving into an implementation which tackles
the problem of inaccurate predictions and error localization
described in Sect. 3.1.

Graf andMüller-Glaser [121,122] (see alsoKordon [153])
describe an architecture that allows for the definition of
various debugging-perspectives independent of the actual
execution-platform. Figure 8 shows their idea of mappings
between different model layers. The basic idea is to extract
runtime information out of the executed binary from the tar-
get platform and transport this information back through the
abstraction layers to model level. Obtained runtime informa-
tion on model level can then be used to visualize the inter-
nal state of the executable. To achieve this, they extend the
UML meta-model with meta-classes that allow storage of
data acquired by the mapper. This approach tackles the prob-
lem of error localization as well as raising the abstraction
level as introduced in Sect. 3.1.

Zeng et al. [275] follow a similar approach by targeting a
model as the object of testing. A Graphical Debugger Model
(GDM) is established which performs the role of a server
interacting with the executable code. Once the application is
running, GDM starts animating the system’s running behav-
iour at model level with help of an event-driven finite state
machine which waits for commands sent by target embed-
ded code. If received actions are not consistent with system
requirements, a bug is reported. A similar approach is tack-
led by Spieker [239], Hooman and Hendriks [135] where a
model of the desired system behaviour is modelled by a state
machine. At runtime, the system state is compared to the
model, possibly leading to errors. As a consequence, diag-
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nosis and recovery phases are applied and corrective actions
are executed, thus solving the problem of finding errors in
such dynamic systems.

Nordstromet al. [195] introduce fault localization inwork-
flows with future state determination, enabling impact analy-
sis when dealing with unforeseen error occurrence. They use
a workflow execution engine simulator running in parallel
with the system. A workflow model represents the current
state of the workflow by using a synchronizer or observer
monitoring the progress of the workflow execution. In case
of an error, the model is updated and a simulation algorithm
determines future states of the workflow assuming no exter-
nal intervention or future faults. Furthermore, jobs within
the workflow model are annotated as desired or undesired to
be used as metric to determine the relative desirability of a
partial workflow.

A middleware-based approach is introduced by Haberl
et al. [124] where a system model is subsequently trans-
formed into executable distributed code. The middleware is
used for interaction within the system by acting as global
communication router between the generated software com-
ponents. As a result, the middleware is able to access the
internal state of the system and store internal data of com-
ponents for later debugging. Captured runtime data enable
debugging at a higher abstraction level by mapping them
back to the model while the handling of error occurrences is
simplified by shifting the analysis to the central middleware
entity.

Other model-based approaches use model analysis to
reduce or generate test cases [265,273], monitor events with
concurrent Petri Net models [52], use stop-and-restart strate-
gies of malfunctioning services [243], gauge effects of par-
tial failure in distributed systems [271] and classify errors
based on quality attributes [187]. Porcarelli et al. [205]
realize fault tolerance by using Petri Net models to drive
decisions about reconfiguration actions in distributed sys-
tems. Krasnogolowy et al. [154] use story diagrams to debug
applications with the help of breakpoints, step-wise execu-
tion, control flow visualization, variable inspection, variable
modification and remote debugging. Another approach is
introduced by Occello et al. [196] to detect errors within
adaptation processes. They propose a runtime model which
enables the verification of dynamic adaptation as described
in Sect. 3.3.1. An overview of using architecture models for
problem diagnosis and repair is given by Garlan and Schmerl
[96,97].

3.3.7 Overview of approaches

Table 2 gives an overview of approaches according to
the classes of objectives introduced in Sect. 3.3: Adapta-
tion, monitoring/simulation/prediction, abstraction and plat-
form independence, consistency/conformance checking and

enforcement, policy checking and enforcement and error
handling.

3.4 Techniques

We classified our identified techniques used in combination
with runtime models into autonomic control loop (analyze
running system and plan corrective actions), introspection
(extract data from a running system), model conformance
(ensure conformance and consistency againstmodels),model
comparison (check differences between two models), model
transformation (change representation ofmodels), andmodel
execution (execute models with operational semantics).

3.4.1 Autonomic control loop

In the existing literature, we identified three strategies to
address the five adaptation scenarios described in Sect. 3.3.1:
Autonomic control loop, structural adaptation and parame-
ter adaptation. Structural and parameter adaptation are often
used in combination with the autonomic control loop strat-
egy, sowe decided to include them in this section aswell. The
characteristics and relationships between these strategies are
discussed in the following paragraphs.

Autonomic control loops, as in the approaches of Waig-
nier et al. [261] and Pienaar et al. [203], are a key concept
when adapting systems at runtime [198]. The idea origi-
nates from the automatic computing research community
to enable self-management of systems according to desired
goals [147]. Figure 9 illustrates the idea of autonomic con-
trol loops which is to measure system parameters, analyze
them, plan corrective actions if necessary and execute them.
This procedure is known as Monitor-Analyze-Plan-Execute
loop (MAPE/MAPE-K, with a shared knowledge compo-
nent [147]) or Collect-Analyze-Decide-Act loop [73]. The
planning component of the loop needs to identify alterna-
tive configurations (that is, an arrangement of system parts)
that satisfy current contextual requirements and constraints.
There exist formalmethods to compute solutions to such con-
figuration problems and to checkwhether given requirements
are not violated [41].

Dubus andMerle [74] use models within this control loop
as abstract representation of the system to reconfigure appli-

Running system

ExecuteMonitor

Analyze Plan

Fig. 9 Idea behind an autonomic control loop
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cations. This model evolves with the system and describes
deployment entities and application components, helping to
plan adequate reconfiguration actions. A similar approach is
introduced by Garlan et al. [95] where their framework uses
abstract architecture models to monitor a system, check con-
straint violations and trigger global- and module-level adap-
tation if necessary. The abstract architecture model offers
a global perspective on the system and exposes impor-
tant system-level properties and integrity constraints. Gamez
et al. [91] use additional feature models in the control loop
to represent potential middleware configurations at runtime,
shifting reconfiguration to the middleware level. The set of
actions that must be executed to pass from one valid configu-
ration to another is specified in an OWL-S plan model com-
pliantwith feature and architecturemodels.Other approaches
include machine learning [253] and execution trace analysis
[189] in the automatic control loop. One benefit of such auto-
nomic control loop lies in the reduced need formanual human
interventions which often lead to low abstraction, mainte-
nance, and reusability, as pointed out in Sect. 3.1. Another
advantage are the improved self-management capabilities for
running systems (self-configuration, self-optimization, self-
healing, self-protection [147]).

Within the autonomic control loop, the process of adapta-
tion itself is accomplished either by structural adaptation
(system component variability) or parameter adaptation
(modification of variables to alter program behaviour).
Floch et al. [83] apply structural adaptation by plugging
in different component implementations whose externally
observable behaviour conforms to a specific component type.
Together with parameter adaptation, a mixture of coarse-
grained (structural) and fine-grained (parameter) adaptation
is achieved. Approaches by Amoui et al. [8,9] and Der-
akhshanmanesh et al. [71,72] use the framework GRAF
(Graph-based Runtime Adaptation Framework) which also
supports both adaptation strategies. Structural adaptation
is realized by replacing a block of the control flow with
the execution of an alternative behaviour with equivalent
pre- and post-conditions at runtime. Blocks are replaced in
a behaviour description that is part of the runtime model
and are executed by a model interpreter when the con-
trol flow decides about the interpretation method. For para-
meter adaptation, the application flow is redirected to an
alternate action at a Turning Point which is a branch
in the control flow with a well-defined decision crite-
rion. Such a criterion is a special variable that can be
changed in the runtime model, propagating values back to
the adaptable software. Another approach using both para-
meter and structural adaptation is introduced by Caporus-
cio et al. [48] where runtime performance management is
achieved by adapting the number of threads (parameter) or
adding/removing component or connector instances (struc-
tural).

3.4.2 Introspection

Introspection deals with extraction of runtime system data in
order to apply model-based and control loop techniques on
the analyzed behaviour. We subdivided introspection mech-
anisms into three different groups:

• Event log checking
• Instrumentation
• Management API

Event log checking accomplish the data extraction by scan-
ning event log entries emitted by the system under observa-
tion. Such event log entries have to follow a defined struc-
ture do be processed externally and in further consequence
to be related to runtime representations of models. The pre-
viously mentioned approach of Bodenstaff et al. [37] uses
this technique to check a model against the running system.
The event log is assumed to be consistent with the running
system and also with a model if essential parts of the model
do not contradict. In other words, it is assumed that the event
log reflects a correct representation of the running system.
The challenge in this approach lies in identifying relevant
parts of the event log and abstracting them to enable con-
sistency checking between the running system and a model.
To achieve this, either the system is adapted so that emit-
ted events have the proper format or the necessary format is
reconstructed from raw event logs.

In case of instrumentation, monitoring functionality is
inserted into the system under observation. Insertion of mon-
itoring code requires the source or bytecode to be available
and is often realized by using aspect-oriented programming
to weave data extraction code into the application. Extracted
data can then be related to runtime representations of mod-
els to enable reasoning on a higher level of abstraction.
On bytecode level, Hamann et al. [128] propose monitor-
ing of JVM hosted applications by using a platform-aligned
model (PAM) as link between the platform-specific model
(PSM) and the platform-independent model (PIM). A PAM
is iteratively designed through assumptions which are stated,
checked, and refined. A first iteration of the PAM can be
described in a declarative way, reverse engineered out of the
implementation or derived from component specifications.

Nierstrasz et al. [193] use instrumentation at runtime in
combination with an Abstract Syntax Tree (AST) model as
abstraction above the bytecode level. They introduce the con-
cept of links to be set as annotations to AST nodes which
are transformed by a compiler plugin before execution. This
results in code to be inserted in the program at nodes where
links are installed. Such links can also be installed by other
links or manipulated by themselves. A similar approach is
tackled by Halfond and Orso [125] where code instrumenta-
tion adds calls to a monitor to check for illegal SQL queries
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at runtime. An example validation model for SQL queries is
depicted in Fig. 7. Other approaches realize instrumentation
by aforementioned aspect-orientation [261] or by planting
special activities into WS-BPEL processes to enforce com-
pliance to IAM policies at runtime [138]. All approaches
tackle the problem of low abstraction introduced in Sect. 3.1
by shifting analysis to the model level.

In case of Management APIs, an interface on the target
system exists which allows extraction of runtime state infor-
mation. An example of such an interface are reflection APIs
of modern programming languages which allow to query and
modify the structure of a computer program at runtime. A
reflective architecture consists of two causally connected lay-
ers: A base-level realizes the functional aspect of the system,
whereas a meta-level realizes the non-functional aspect of
the system and carries out the evolution on a reification of
the design information [54,163].

Reflection is used in reflective middleware like OpenORB
[10,65] or ReMMoC [116,118] to inspect and adapt commu-
nication and interoperability functionalities to cope with dis-
tributed changing environments. The base level of OpenORB
consists of interfaces, components, and bindings,whereas the
meta-level is a type repository containing meta-information
such as interface definitions, component definitions, and
binding definitions [64]. Such reflective middleware is also
able to utilize aspect-oriented techniques to adapt or re-order
advice behaviour to further increase adaptation capabilities
of the middleware architecture [120,252] (see Sects. 3.6.3
and 3.6.4 for details to these architectures).

The key issue is to maintain a causal connection based
on management APIs provided by target systems. Such an
approach is followed by Huang et al. [136] and Song et al.
[231–235] by implementing a synchronization between an
architecture model and the system state with respect to con-
sistency, non-interference introspection, effective reconfigu-
ration and stability. The authors utilize code generation for
wrapping the low-level APIs, use a system-model adapter to
support reading and writing system state in a model-based
way and thus solve the problem of low abstraction by manip-
ulating the system at the model level.

3.4.3 Model conformance

Model conformance addresses the conformance and consis-
tency of data and processes according to models. Model
conformance is closely related to the previously described
objectives of consistency and conformance, policy check-
ing/enforcement and error handling (see Sects. 3.3.4, 3.3.5
and 3.3.6, respectively) since extracted runtime informa-
tion is checked against models to trace constraint violations
and system behaviour. Model conformance requires intro-
spection mechanisms introduced in Sect. 3.4.2 in combi-
nation with runtime representations of the models, e.g. by

using the common XMI (XML Metadata Interchange) for-
mat. Tombelle and Vanwormhoudt [251] give an overview of
introspection andmodel scripting techniques to process these
runtime model representations. Examples of ensuring con-
formance and consistency against models are graph-based
approaches (Petri Nets, state machine model), the usage of
Linear Temporal Logic (LTL) and the enforcement of OCL
constraints.

Acombinationof thegraph-based strategy andLTL is used
byRammig and Zhao et al. [206,279–281]. LTL formulas are
derived fromRT-OCLconstraints and transformed intoBüchi
automata. By using such an automaton in combination with
the source code and an abstract system model (expressed as
state machine), model checking shows whether an execution
trace conforms to the system model (consistency checking)
and whether a partial state space of the system model con-
forms to the Büchi automaton (safety checking). A similar
aforementioned approach of combining LTL and Abstract
State Machines (ASMs) is introduced by Arcaini et al. [11].
Both approaches address the problems of low abstraction and
error localization during runtime by usingmodels at runtime.

Another approach using LTL is followed by Zhang and
Cheng [277]. They describe the need of building a model
for a source domain (the source model) and a model for
a target domain (the target model). The source and target
models should be verified against local requirements for
the source and target domains, respectively. This verifica-
tion is expressed via LTL formula to reason about adaptation
mechanisms in wireless networks. Other approaches include
ReMMoC [116,118], Starlink [39,164] and OverStar [119]
which check conformance of communication processes to
ensure interoperability (see Sect. 3.6.4 for details to these
approaches).

3.4.4 Model comparison

Model comparison addresses the comparison of two models,
especially to yield information about their differences and
needed delta-operations to transform one model into another
model. An often referenced tool for providing model com-
parison functionality is EMF Compare (Eclipse Modelling
Foundation), although alternatives like KMF (KevoreeMod-
elling Framework) are developed to improve performance,
reduce memory footprint, and eliminate library dependen-
cies [69,86]. Model comparison is mainly used to calculate
operations needed for transitions between system states.

An adaptation approach using model comparison is intro-
duced by Fleurey and Morin et al. [82,180,181]. The key
idea is to produce a reference model of the running system
using aforementioned introspection mechanisms. The result-
ing model represents the current configuration which is then
compared to a model containing the new configuration. The
comparison yields another model that specifies the differ-

123



www.manaraa.com

48 M. Szvetits, U. Zdun

ences and the similarities between the models. By analyz-
ing this model, reconfiguration commands are created which
add and/or remove bindings and/or components to reflect
the requested adaptation. The same comparison principle is
followed by Waignier et al. [261] where a new architecture
description model is compared to the model of the running
system to identify reconfiguration actions and calls to the
platform-specific API. Both approaches address the problem
of requirement evolution and changing environments intro-
duced in Sect. 3.1 by adapting the system according to the
new requirements.

3.4.5 Model transformation

Model transformation is used to change the representation of
a source model into another form, called the target model.
Such transformations aim to reduce errors through automa-
tion while ensuring consistency between the source and the
target model. They are generally divided into Model-To-
Text transformation (converting a model into a textual rep-
resentation, e.g. source code) andModel-To-Model transfor-
mation (output is another model). Established methods to
define such model transformations are QVT (Query-View-
Transformation) and TGG (Triple Graph Grammar). We
already pointed out approaches using TGG [105–108,255,
257,258] (see Fig. 6) and ones that use QVT [136,231–235].
The approaches tackle the problem of low abstraction by
transforming low-level representations of the system into one
or more models of higher abstraction to simplify monitor-
ing and controlling of the system under observation, mainly
by targeting architecture models as transformation output to
obtain a basis for system-wide reasoning.

3.4.6 Model execution

By the time of writing, it is not entirely clear how model
execution fits into the models at runtime paradigm since its
relationship to dynamic reflection and introspection needs
(see Sect. 3.6) is debatable. It is a recurring question at the
Models@run.time workshop [27]. We decided to include
model execution as separate technique since changes to an
interpreted runtime model directly imply changes in the
behaviour of the running system - this property clearly falls
into the definition of a causal connection (see Sect. 1). Fur-
thermore, we feel obliged to follow a holistic approach when
conducting a literature review, so we decided to include this
topic in the article, although we are aware that the ongo-
ing discussions are not for no reason. Also, this technique
is strongly related to the workflow community since model
execution is a common procedure in workflow execution
engines.

Model execution attends to direct execution of models
containing operational semantics. In other words, one repre-

sentation serves as both the model and the program which
are necessarily at the same abstraction level [109]. Muller
et al. [186] introduce weaving of executability with static
type checking and support for genericity into meta-data lan-
guages. The resulting combination eases simulation and test-
ing of operational semantics ofmeta-models. TheOMGstan-
dard fUML introduces executable semantics to a subset of
UML where models can also be used at runtime in com-
bination with execution traces [172,173]. A popular exam-
ple of executable models are state machines which are used
throughout our identified literature. They allow to specify
execution flows at the model level independent of the con-
crete implementation, solving the problem of low abstraction
resulting from hand-written artefacts.

Arcaini et al. [11] use ASMs as executable specification
and oracle of the expected system behaviour. A monitor
checks conformance between the observed system state and
the expected state by executing the state machine. The afore-
mentioned GRAF framework [8,9,71,72] achieves adapta-
tion by redirecting the control flow of the software to amodel
interpreter component at points where the need for adaptiv-
ity is expected. When such an interpretation point is reached
during execution, the model interpreter executes associated
behaviour described in a runtime model.

In the approach of Pleumann and Haustein [204], domain
models are directly executed to realize dynamic web appli-
cations. Class diagrams with OCL annotations are the cen-
tral elements to drive database access, user interface gener-
ation, and business logic interpretation in a three-tier archi-
tecture. Database access is realized by a persistence layer
to XML files or existing databases. Business logic is inter-
preted with the help of UML state machine models linked to
elements of the UML class diagrams. A model-driven run-
time combines the class diagrams, state machine models,
and special HTML templates to a working three-tier web
application.

Other approaches realize executable task models describ-
ing a task life cycle [38], use model execution to guide test
data generation [273], execute integrated behaviour mod-
els [149], interpret models to ease development of multi-tier
applications [226], interpret state machines of model-based
components [249], execute models to support adaptation and
service delivery validation [50,183] and support user inter-
face development using executable models containing sta-
tic structure, dynamic state and execution logic information
[159].

3.4.7 Overview of approaches

Table 3 gives an overview of approaches related to the dif-
ferent techniques introduced in Sect. 3.4: Autonomic control
loop, introspection, model conformance, model comparison,
model transformation, and model execution.
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Table 3 Overview of
approaches related to the
identified techniques

Technique Related approaches

Autonomic control loop [8,9,48,71,72,74,83,91,95,101,189,203,253,261]

Introspection Event log checking: [37]

Instrumentation: [125,128,138,193,261]

Management APIs: [54,64,136,163,231–235]

Model conformance [11,39,116,118,119,164,206,251,277,279–281]

Model comparison [82,180,181,261]

Model transformation [105–108,136,231–235,255,257,258]

Model execution [8,9,11,38,50,71,72,149,159,172,173,186,204,226,238,249,273]

Table 4 Overview of kinds of models and their purpose

Kind of model Objectives of runtime models Usage

Abstract syntax tree Adaptation [193]

Architecture model Adaptation, monitoring [83,101,126,136,231–235]

Aspect model Adaptation, error handling [82,90,180,181]

Business process model Adaptation, policy checking and enforcement [88]

Context model Adaptation, monitoring [140,143,223–225]

Feature model Adaptation, consistency [3,55–58,91,140,143,148,200,211]

Goal/requirements model Adaptation [4,21,22,111,141,142,214,227,260,266,274]

Observation model Abstraction, monitoring [276]

Performance model Adaptation [47,162]

RBAC model Policy checking and enforcement [138,197,244]

Safety model Policy checking and enforcement [219,220]

State machine model Adaptation, conformance, error handling [11,17,135,275]

Task model Adaptation, monitoring [68,223–225]

3.5 Kinds of models

In this section, we focus only on the kinds of models used
in the publications after applying our selection criteria of the
literature search. Many more kinds of runtime models exist
that we do not discuss in detail, like Petri Net models [52,
146,192,217,221,268,269], policy models [15], Probability
Fuzzy Cognitive Maps [262], quality models [187], physical
models [2,70], contracts [33,60,190], Markov chains [81,
104], Queueing Networks [51,104,184] and domain-specific
languages in general [1,46,214,267]. The diverse kinds of
models demonstrate how elastic the term model truly is.

We want to point out one kind of model which is fre-
quently used in recent research: Goal models. Goal models
describe the relationships between a system and the envi-
ronmental context [274]. With contextual information, goal
models enable to assess candidate solutions against high-
level criteria for stakeholders to analyze system-wide trade-
offs [260]. Using goal models (or requirement models) at
runtime takes the idea of runtime models one step further
towards problem space. Welsh et al. [266] use goal models
to realize requirements-aware systems by checking assump-
tions made at design time. If such assumptions do not hold,

system-wide adaptations are triggered to enable alternative
goal realization strategies. Goldsby et al. [111] use multiple
goal models containing requirements specified by different
developers at different levels of requirements engineering.
Alférez and Pelechano [4] use requirement models in com-
binationwith various othermodels to support dynamic evolu-
tion of context-aware systems: An architecture model which
describes the architecture of the system, a context model
holding context knowledge, tactic models which describe
strategies for preserving the requirements at runtime and a
variability model describing dynamic configurations of the
system. Silva Souza et al. [227] propose Awareness Require-
ments (AwReqs), requirements that inform about the success
or failure of other requirements. Such AwReqs are repre-
sented in a formal language and can be directly monitored
by a requirements monitoring framework. Furthermore, they
propose a graphical representation that allows to include
the AwReqs in goal models to improve the communica-
tion among system analysts and designers. Other approaches
using goal/requirement models are listed in Table 4.

We decided to list our selected kinds of models in Table 4
instead of going into detail about every other kind of model,
as the majority of them has already been introduced above
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Fig. 10 Model access examples when using a monolithic architecture. a Access a model file, b access an in-memory model, c component with
embedded model

when discussing the respective approaches. The table pro-
vides an overview about the purpose of each kind and
their usage in our identified literature. We classified the
purposes according to our identified objectives of runtime
models. Kinds of models not explicitly mentioned in pre-
vious sections are business process models, context models
and observation models. Business process models describe
sequences of business activities and are used to check work-
flow conformance and guide adaptation through extensions
to BPMN (Business Process Model and Notation) elements
[88]. Ontology-based context models are used to model con-
text information to enable monitoring of context changes
and simplify adaptation decisions. Serral et al. [223–225]
use such context models in combination with task models to
describe user behaviour patterns and automate user routines.
An observation model is an abstraction of the system which
consists of a hierarchy of monitored entities and includes
a collection of metrics used to measure the performance of
business operations [276].

3.6 Architectures

Processing models at runtime requires an architecture with
introspective capabilities to extract relevant runtime infor-
mation and to relate the collected data with models. This
is very similar to reflection where the system under obser-
vation is able to access its own structure which is causally
connected to it (modifications to this self-representation are
reflected in its own status and computation) [166]. Models at
runtime differ from reflection mainly in terms of abstraction:
While reflection is more solution space-oriented, models at
runtime operate on a higher level of abstraction towards prob-
lem space [34]. At the model level, model-driven techniques
can then be utilized at runtime which is not considered in
traditional model-driven approaches [20,34,218].

While investigating our literature search results, we iden-
tified five main types of architectures when processing mod-
els at runtime: Monolithic, local dataflow, model-aware mid-
dleware, communication middleware, and repository archi-
tectures. They differ mainly in terms of model access and
level of dynamics like adaptation or simulation capabili-
ties. Monolithic architectures encompass functionality in a
single system component without separation of concerns.
Local dataflow architectures use inter-process communica-

tion or in-process communication between different compo-
nents or threads to gain flexibility through modularity. Mid-
dleware architectures enable distributed communication and
usemiddleware components for additional functionality such
as improving control, monitoring, and logging. Repository
architectures enable concurrent access to model data stored
in a central repository and archiving of different model ver-
sions. We discuss each of the architectures in detail in sub-
sequent sections.

3.6.1 Monolithic architecture

In a monolithic architecture, the whole system functionality
is captured in a single unit without separation into multiple
system components. In case of runtime models, we speak of
a monolithic architecture if a runtime model is either locally
accessed and/or manipulated by the running system itself
or is directly integrated in a software component, e.g. as
woven code or as meta-data of an assembly file. The missing
loose coupling of system components leads to a simple sys-
tem design, but lacks adaptability, scalability and reusability.
Therefore, such an architecture is often used in combination
with direct model execution or interpretation (see Sect. 3.4.6)
when dynamic aspects like adaptation, simulation and debug-
ging can be neglected. Figure 10 shows three examples of
runtime model access in monolithic architectures: (a) a sys-
tem which consumes a local model file (e.g. in XMI format),
(b) a system which has access to an in-memory model (e.g.
through woven model code) and (c) a component which has
embedded model information with a provided communica-
tion interface. Example approaches using monolithic archi-
tectures are introduced by Thonhauser et al. [249] (interpret
state machines of model-based components) and Elkorobar-
rutia et al. [76] (use statemachinemodels within components
as basis for self-healing mechanisms).

3.6.2 Local dataflow architecture

Local dataflow architectures are used to decompose a local
task into several subtasks with lower complexity, thus com-
pensating disadvantages of monolithic architectures intro-
duced by missing loose coupling. Dataflow between local
subtasks can be implemented by inter-process and in-process
communicationmechanisms like sockets and threads, respec-
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Fig. 11 Inter-process communication to separate the model from the system under observation. a Pipes and filters communication, b socket
communication

tively. The Pipes and Filters architectural style [43] is also a
possibility to realize such an architecture [199], although we
could not find a concrete approach in our literature search
which uses Pipes and Filters. Figure 11 shows two examples
of pipes and filters and socket communications. In Fig. 11a,
the pipes and filters architecture is used for subsequent trans-
formation of observed system information into data to be
visualized in a model, enabling monitoring and simulation
through a reusable component. Figure 11b shows the com-
munication between a system and a model-aware controller
part through sockets. Since socket communications are bidi-
rectional, this architecture qualifies for dynamic approaches
with adaptation capabilities, as pointed out by the double-
headed arrow in Fig. 11b. A socket-related approach is intro-
duced by Hooman and Hendriks [135] where a model execu-
tor is integrated into the controller part to check the runtime
system state against a statemachinemodel, leading to correc-
tive actions if errors are detected. Götz et al. [114,115] also
use this kind of architecture to realize energy auto-tuning by
optimizing multiple resources in distributed systems.

3.6.3 Model-aware middleware architecture

Middleware architectures enable distributed communica-
tion and provide additional functionality such as improv-
ing control, monitoring and logging. Amodel-aware middle-
ware architecture consists of a central entity responsible for
processing model information and providing model access
services within a distributed system. Such architecture helps
to maintain monitoring and adaptation mechanisms at a cen-
tral place, increasing reusability while compensating limi-
tations of local machine boundaries existing in monolithic
and local dataflow architectures. Figure 12 shows an exam-
ple model-aware middleware which monitors and controls a
system while collecting information from other data sources
(e.g. sensors or manual input data to drive reconfiguration
actions).

Since there exists a variety of middleware approaches, we
will not go into detail about all of them. Instead we pick out
approaches covering the class of model-aware middleware
architectures very clearly and will mention other approaches
in short form.

One previously mentioned approach is introduced by
Taconet et al. [246] which makes dynamic use of new
context data collectors. Their middleware CA3M (Context-

Controlled system

Model-aware middleware

Data
source 1

Data
source 2

Data
source n 

... ... ...

Fig. 12 Model-aware middleware for monitoring and controlling a
system according to input data

Aware Middleware with context-awareness Meta-Model)
uses context-awareness models present at runtime which
are updated to fulfil new application requirements. CA3M
dynamically constructs bridges between applications and
distributed collectors to realize monitoring elements of
the context-awareness model. Instances of the models are
updated at runtime, demonstrated by the authors as new plu-
gins are added to amobile-chat application.CA3Moffers two
kinds of interactions:Observationmode (application initiates
exchange of collector data) and notification mode (the other
way around, periodically or threshold-based). By using the
CA3Mmiddleware, the authors tackle the problem of chang-
ing and heterogeneous environment pointed out in Sect. 3.1.

The MADAM middleware owns a planning framework
that subsumes and automates adaptation decision-making in
reflective component-based adaptive systems [5,6]. Variabil-
ity of the adaptive system is modelled as variation points
where component compositions are selected to build an appli-
cation. Utility functions evaluate the user benefit of a compo-
nent at a variation point in the composition. Each component
has a type that defines its signature and externally observ-
able behaviour. Components can be plugged in at a variation
point if the type conformswith the type specified for the vari-
ation point. They are annotatedwith non-functionalmetadata
(according to a given QoS model) which is associated with
component ports to specify the services provided or required
at ports. This metadata is then used to maximize the utility of
the application: For example, minimum resource consump-
tion, maximum resource consumption (likely to be best per-
formance), or maximum efficiency (ratio utility to resource
consumption).
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Another approach is introduced by Haberl et al. [124]
where a systemmodel specified inCOLA (COmponent LAn-
guage) is subsequently transformed into executable distrib-
uted code.Amiddleware acts as global communication router
between generated software components and is thus able to
access internal system state, store internal data of compo-
nents, and record input/output values. These data are fed
back to the model, allowing debugging on a higher abstrac-
tion level and thus solving the problem of reduced level of
abstraction resulting fromhand-written artefacts as described
in Sect. 3.1.

Other approaches use featuremodels to represent potential
middleware configurations at runtime [91] or use architecture
models to control adaptation and a middleware to identify
all alternative components pluggable into component frame-
works [83].

3.6.4 Communication middleware

A communication middleware focusses on abstracting away
complexity of network communication between distributed
components. As seen throughout this article, the usage of ser-
vices is well established in combination with runtime mod-
els. Many middleware-based approaches use services as pri-
mary communication method between distributed compo-
nents. The approach introduced by Rammig and Zhao et al.
[206,279–281] use service calls of a model-based service
to verify reconfiguration plans. The approach is depicted in
Fig. 13 in simplified form. Assuming a substitution of com-
ponent D with E of a given application, the question arises if
real-time constraints will still be satisfied and if the system
still keeps safety and consistency after the replacement. To
answer this question, RT-UML models and associated RT-
OCL constraints are transformed into Kripke structures and
Büchi automata which are accessible via a service. At run-
time, if a component replacement is requested within the
component architecture, the Real-Time Operating System
(RTOS) sends a request to this verification service containing
system state and timing constraints. The verification service

Fig. 13 Simplified view of the case study introduced by Zhao et al.
[280]

then fetches related Kripke structures and Büchi automata
and immediately starts on-the-fly verification. The service
answers Yes, No or Unknown as decision about accepting or
rejecting the component substitution.

A key challenge of distributed communication is interop-
erability between different network participants. Grace et al.
[116,118] propose a reflective middleware ReMMoC that
allows mobile clients to be developed independently of both
discovery and interactionmechanisms ofweb services. ReM-
MoCuses a binding framework for interoperationwith differ-
ent interaction types (e.g. SOAPRPC, event subscriber) and a
service discovery framework for discovering services using a
range of service discovery protocols. Similar interoperabil-
ity goals are pursued by the frameworks Starlink [39,164]
and OverStar [119]. Starlink uses abstract network messages
paired with coloured automata that represent the required
interoperability behaviour between protocols. OverStar uti-
lizes self-managing overlay networks with open access to the
overlay nodes, which enables additional flow logic. Another
approach is proposed by Bencomo et al. [23] where medi-
ators are dynamically generated to translate actions of one
networked system to actions of another networked system.
Such code generation strategies are discussed in Sect. 3.7.4.

More approaches exist which use aforementioned model-
based adaptation for dynamic service selection [49,88], use
a diagnose service to request monitoring information [240,
241] and enforceRBACconstraints in service-based business
processes [138].

3.6.5 Repository architecture

Repository-based approaches use a central storage of models
or model-related data. The advantage of the repository-based
approaches lies in the controlled access of model instances
as well as the centralized storage of model evolution infor-
mation. Repositories are used to establish a distributed archi-
tecture and ease access and management of model data by
providing standardized interfaces for model manipulation.
Figure 14 shows a repository architecture which enables con-
current model access and versioning. Repository updates can
either be applied by manual actions or other systems which
have writeable access to the repository.

Repository
System

read

System
read/write

add/delete

update

Fig. 14 Repository architecture which enables concurrent model
access and versioning
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The aforementioned approach by Holmes et al. [132–134]
interactively interprets and analyzes monitored information
with respect to compliance to regulations, using models as
first-class citizens. Models are stored in a central MORSE
repository (Model-Aware Repository and Service Environ-
ment) and can be queried and manipulated via web services
while the system runs. Furthermore, the repository is able to
store multiple versions of models so that old versions can be
used until their instances are deleted ormigrated to new ones.
Thus, the advantage of the repository lies in hot-plugging
new model versions so newly created instances are instantly
able to use them. However, the challenge of such a reposi-
tory approach lies in maintaining consistency. The authors
counter this problem by artefact relationships via Univer-
sally Unique Identifiers (UUIDs) and compliance annota-
tions expressed via dedicated DSLs.

A similar approach toMORSE is described by Amoui and
Derakhshanmanesh et al. [8,9,71,72] by using the already
mentioned GRAF framework. One part of the framework is
a model manager which is responsible for interactions with
three repositories: Schema and Constraints, Runtime Model
andModelHistory. Themanager offers access to these repos-
itories in form of query and transformation operations. The
Schema and Constraints repository contains a schema which
describes allowed model elements for a runtime model in
GRAF. Constraints are declared both at schema level and
model level. The Runtime Model repository contains a run-
time model represented by a graph that describes parts of the
adaptable state and a collection of behaviour descriptions.
The Model history repository stores versioning information
of the runtime model to trace back past model transforma-
tions.

3.6.6 Overview of approaches

Table 5 gives an overview of approaches according to
the architectures introduced in Sect. 3.6: Monolithic, local
dataflow, middleware, and repository architectures. Approa-
ches can occurmultiple times in the overview if they usemore

Table 5 Overview of approaches related to the identified architectures

Architecture Related approaches

Monolithic [17,76,125,193,248–250,277]

Local dataflow [114,115,135,199]

Model-aware
middleware

[5,6,11,14,47,55,57,58,61,66,74,83,91,104–106,
107,124,136,194,198,199,217,231,232,234,
235,246,255,257,258]

Communication
middleware

[14,49,74,88,104,132–134,138,191,199,206,217,
226,240,241,279–281]

Repository [7–9,48,71,72,132–134,191,205,226]

than one of the identified architectures (e.g. a repository in
combination with a communication middleware).

3.7 Actions after runtime model analysis

When models are processed at runtime, different actions are
executed as a result of the performed model analysis. In this
section, we summarize common actions performed after run-
time model analysis such as component replacement, code
generation, or manipulation of the analyzed model itself.
We discuss component and connector manipulation, ser-
vice bindingmanipulation,management API interaction, and
code generation as adaptation and reconfiguration possibili-
ties triggered by requirement and environment changes. Fur-
thermore, we discuss model manipulation and model execu-
tion to updatemodel information for ongoingmonitoring and
to execute models with operational semantics.

3.7.1 Component and connector manipulation

Component and connector manipulation focuses on adding/
removing components or connectors at runtime to adapt the
systemaccording to changes in requirements and the environ-
ment. It requires a component model which defines the inter-
faces and elements of components to ensure compatibility. To
prove correctness of an adaptation, Inverardi et al. [144] pro-
pose a theoretical assume-guarantee framework which ana-
lyzes if invariant properties are violated. Their framework
can be applied at different levels of abstraction spanning from
code to software architecture. For mobile environments, the
MADAM project proposes a middleware-based solution to
design and implement self-adaptive component-based appli-
cations [100]. Variability is obtained by applying a compo-
nent framework that facilitates dynamic creation of applica-
tion variants. The component configuration of an application
may change at runtime to get the most rewarding variant
which is determined by utility functions.

An often used framework to perform such adaptation is
OSGi (Open Services Gateway initiative) as dynamic com-
ponent system for Java where components can be installed,
started, stopped, updated, and uninstalled remotely with-
out reboot. A Bundle—the OSGi term for a modularization
unit—can be in different states according to its current usage,
as depicted in Fig. 15. Installed Bundles are successfully
loaded, Resolved are ready to be started or have stopped,
Starting ones are being started and wait for activation, Active
ones are running, Stopping ones are being stopped, andUnin-
stalled Bundles have been uninstalled.

In approaches by Alférez and Cetina et al. [3,55–58] the
OSGi adaptation mechanism is used in combination with
feature models to determine the possible configurations of
the system. Morin et al. [180] use OSGi in combination
with model comparison between source and target models
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Installed

Resolved
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install
update

refresh
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update start
lazy activation

stop

Fig. 15 States of an OSGi Bundle

to reason about adaptation steps. Matevska [170] presents
an approach called AVORR (Availability Optimized Run-
time Reconfiguration) which aims at maintaining continuous
availability while maximising service responsiveness during
runtime reconfiguration of component-based systems.Welsh
et al. [266] use goal models to realize requirements-aware
systems by checking assumptions made at design time. If
such assumptions do not to hold, system-wide adaptations
are applied by swapping components and bindings to enable
alternative goal realization strategies. Other approaches use
component and connector replacement techniques as well
[83–85,126,198,199,201,202,261].

A special approach using runtime models in combination
with component-based adaptation is introduced by Thon-
hauser et al. [248,250]. Applications are defined as an assem-
bly of loosely coupled Model-Based Software Components
(MBSCs) which belong to different owners. They cover all
relevant domain-specific aspects (like behaviour or data) of a
component by using multiple distinct models. Such MBSCs
reside in special containers and get executed directly at
runtime. Furthermore, these containers have a plugin mech-
anism to support additional kinds of models.

3.7.2 Service binding manipulation

Similar to component and connector replacement, manipu-
lation of service bindings achieve adaptation through struc-
tural change, especially when dealing with QoS require-
ment restrictions in distributed systems. Cardellini et al. [49]
meetQoS requirements in volatile operating environments by
using a behavioural model of composite services updated at
runtime by a monitoring activity. Changes in the composite
service environment lead to a change of bindings between
abstract services and the concrete services that implement
them. This means that swappable concrete services have to
offer the same functionality for a specific abstract service.

Variability 
model registry

Service 
consumer

Service 
provider

1. Publish2. Discover

3. Feature request

4. WSDL of generated service

5. Personalized communication

Fig. 16 Simplified view of the service customization approach by
Nguyen and Colman [191]

Such re-arrangement is reasoned from SLAs negotiated with
service clients and providers.

Calinescu et al. [45] propose the framework QoSMOS
which utilizes Markov models within a feedback loop (see
Sect. 3.4.1) to determine quantitatively the reliability and
performance quality metrics of service-based systems. The
monitoring part of the loop determines performance, relia-
bility and workload of services and updates Markov mod-
els accordingly. The results are analyzed and changes are
planned in termsof changing the implementedworkflow (that
is, for example, the service bindings) or modifying resource
allocation.

Another form of dynamic service binding is introduced
by Nguyen and Colman [191]. They use feature models at
runtime to enable web service customization for customers.
Figure 16 gives a simplified overview of their approach.
First, the service provider publishes a service variability
model to a central service registry. The service consumer
then fetches the variability model from the registry, selects
desired features, and sends the feature compilation request to
the provider. The provider composes a service interface con-
sisting of bindings to the requested features and publishes an
appropriate WSDL description. The consumer is then able
to interact with the personalized service interface.

Grace et al. [116,118] propose the reflective middleware
ReMMoC that allows mobile clients to be developed inde-
pendently of both discovery and interaction mechanisms of
web services. Similar interoperability goals are pursued by
the frameworks Starlink [39,164] and OverStar [119]. These
approaches are described in Sect. 3.6.4.

3.7.3 Management API interaction

Aftermodel analysis, required changes can also be applied by
calling interface operationswhich are directly exposed by the
system under observation. Such management APIs provided
by the system also qualify for extraction of runtime system
data in order to apply model-based and control loop tech-
niques on the analyzed behaviour, as described in Sect. 3.4.2.
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Possible realizations of system management interfaces are
reflection APIs and network-based mechanisms like sockets
and services (see Sects. 3.6.2 and 3.6.4, respectively). The
already mentioned approach by Huang et al. [136] and Song
et al. [231–235] utilizes code generation for wrapping low-
level management APIs and uses a system-model adapter to
support reading and writing system state in a model-based
way, enabling the manipulation of the system at the model
level.

3.7.4 Code generation

If model analysis detects adaptation needs and component,
service, or management API manipulation are not available,
reconfiguration can also be achieved by generating reconfig-
uration scripts or code which adds additional functionality.
Scripts are sent to the controlled system nodes which inter-
pret them to drive the transition from the current to the desired
configuration. Because of their dynamic nature, scripting lan-
guages like FScript3 qualify particularlywell forwriting such
reconfiguration scripts, although there is no strict limitation
to scripting languages. As an example, in the already men-
tioned approach by Fleurey and Morin et al. [82,180,181]
reconfiguration commands responsible for structural adapta-
tion are instantiated in case of context changes to meet the
new requirements.

In case of code generation, Inverardi and Mori [141,142]
propose a framework to augment a system with new require-
ments arising at runtime. At design time, a context model
is defined which describes the environment that is beyond
the control of the system. The model is updated at runtime
to reflect the current environmental situation. When a new
requirement is specified, a new system variant is generated.
The new variant is loaded by reflection and the entry method
invoked to put the new variant in action.

Alternatively, code can also be generated to dynami-
cally enhance interoperability between two systems. Within
the CONNECT project,4 Bencomo et al. [23] introduce an
approach where mediators are dynamically generated which
translate actions of one networked system to the actions of
another networked system developed with no prior knowl-
edge of the former. Runtime models are used to capture
meta-information about these systems, including interfaces
and additional knowledge about their associated behaviour.
Such mediators are also addressed by Hao et al. [130], their
approach relies on monitoring for runtime message mis-
matches and the semi-automatic generation and deployment
of behavioural mediators. Mismatch detection is prepared
by generated and deployed interceptors which rely on state
machines. A monitor then logs the exchange of messages

3 See: http://fractal.ow2.org/fscript/.
4 See: https://www.connect-forever.eu/.

between different systems and supports the detection of mes-
sage mismatches.

3.7.5 Model manipulation

Direct model manipulation is the common procedure for
monitoring approaches to display system information at
the model level instead of low-level traces [136,193,217].
Behavioural models enable the possibility to trace system
behaviour and workflow activities by extracted system data
which is fed directly into the models [76,121,122,133,168,
169,275]. Monitoring, simulation and prediction approaches
are described in Sect. 3.3.2. Besides monitoring, model
manipulation is also used for incremental refinement of the
model data, e.g. when using performance models to reflect
the current timing constraints given by contextual conditions
[47,48,104]. Such refinement of model data can be used for
self-healing mechanisms where the system is able to update
its own model dependent on the current situation.

3.7.6 Model execution

Another possible action after runtime model analysis is
the direct execution of the model. As described through-
out Sect. 3.4.6, model execution deals with direct execu-
tion of models containing operational semantics. A popular
example of executable models are state machines which are
used throughout our identified literature [11,17,76,78,80,
103,125,135,156,167,177,186,206,248,249,273,275,279–
281].

3.7.7 Overview of approaches

Table 6 gives an overview of approaches according to the
actions introduced in Sect. 3.7: Component and connector
manipulation, service binding manipulation, management

Table 6 Overview of approaches related to the identified actions

Action Related approaches

Component and
connector
manipulation

[3,47,48,55–58,83–85,100,126,170,180,198,
199,201,205,206,246,248,250,261,266,
279–281]

Service binding
manipulation

[39,45,49,55,56,116,118,119,164,191]

Management API
interaction

[20,91,95,96,105–107,136,231–235,255,257,
258,261]

Code generation [23,82,85,124,141,142,180–182,198,199]

Model manipulation [47,48,76,104,121,122,133,136,168,169,193,
217]

Model execution [8,9,11,17,38,71,72,76,78,80,88,90,103,125,
135,156,167,177,186,195,206,226,237,248,
249,273,275,277,279–281]
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API interaction, code generation, model manipulation, and
model execution.

3.8 Research methods and empirical evidence of runtime
model approaches

While extracting objectives, techniques, architectures, and
kinds of models, we also analyzed research methods applied
in literature to evaluate the presented approaches as well as
the resulting empirical evidence. The research methods are
categorized into five different groups [75]:

• Controlled experiment
• Case study
• Survey research
• Ethnography
• Action research

A controlled experiment is “an investigation of a testable
hypothesis where one or more independent variables are
manipulated to measure their effect on one or more depen-
dent variables” [75]. An example would be the measurement
of productivity with and without the usage of a specific soft-
ware.

We define case study as a practical demonstration of an
introduced approach with a variable depth of industrial rele-
vance. Case studies can be either exploratory (observe some
phenomena to obtain new knowledge) or confirmatory (test
approach against existing theories). In contrast to survey
research, case studies usually do not have representative sam-
pling.

Survey research contains the “selection of a representative
sample from a well-defined population, and the data analysis
techniques used to generalize from that sample to the popu-
lation” [75]. An example of such a survey research would be
an analysis of the behaviour of selected developers to derive
information about developer behaviour in general.

Ethnography is a research method where social interac-
tions between people of a specific community are examined
throughfield observation, especially to gain knowledge about
communication culture within that community [208]. The
researcher can either observe the community from an exter-
nal point of view or join the community to gain insight into
the community behaviour.

Action research concentrates on solving problems while
observing the process of problem solving itself. Researchers
reflect over past, current, and planned actions to evaluate their
impacts on the problem solving process in terms of efficiency
and level of improvement.

In our research, only controlled experiments and case stud-
ies were conducted in the identified literature, other forms
of research methods listed above were not applied (at least
not according to the research method definitions given by
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Fig. 17 Absolute frequency of metrics used to evaluate runtime model
approaches

Easterbrook et al. [75]). Our research yielded 10 controlled
experiments and 117 case studies within our literature search
results, whereas 37 case studies are applied in realistic and
80 in exemplary test scenarios.

In addition to the research methods, we took note of met-
rics used to evaluate the identified approaches, e.g. perfor-
mance measurements, lines of code, resource consumption,
and model complexity. Figure 17 gives an overview of iden-
tified metrics regarding absolute frequency of their usage.
Performance covers metrics like response/synchronization/
execution time, latency, down time, reboot delay, and transac-
tions per second. Resource consumption encompasses met-
rics like memory usage and amount of disk I/O opera-
tions. Lines of code measurements involve code sizes when
comparing different approaches or implementation strate-
gies. Utilization deals with resource occupation measure-
ments, e.g. the utilization of network routers before and
after reconfiguration [47,48] or node utilization in case of
virtual machine redeployment [137]. Evaluation regarding
the number of model elements, components, instances and
object links are summarized in metric complexity. Overhead
measures the ratio of intervention efforts (e.g. reconfigu-
ration/monitoring actions or execution of instrumentation
instructions) in comparison with the regular workflow. The
file sizemetric describes the sizes of models stored in files or
components enriched with embedded data. Robustness deals
with measurements of fault tolerance, error distribution and
anomaly detection rates. Scalability measurements encom-
pass analysis of systembehaviour under variousworkloads as
well as stress test scenarios. Comparisons of estimated para-
meterswith real datameasurements are summarized inmetric
estimation quality. The effectiveness metric covers the ratio
of successful versus unsuccessful actions, e.g. the compar-
ison of successful and unsuccessful reconfiguration actions
or preventions of SQL injection attacks [125]. Productivity
deals with productivity improvements gained through usage
of the respective approach in a realistic, business relevant test
scenario. As Fig. 17 outlines, performance measurement is
by far the most often used method for evaluating approaches
dealing with models at runtime.
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Table 7 Overview of approaches related to the applied research
methods

Research method Related approaches

Controlled
experiment

[7,19,47,48,52,92,95,126,137,171]

Case study Realistic scenario:

[2,8,9,14,18,23,31,54,71,72,112,123–
126, 128,131,133,138,157,180,187,198,
199,211,223,224,226,229,233]

[240,243,248,250,265,272,278]

Exemplary scenario:

[3,11,15,32,35–37,49,55,57,58,61,62,77,
79,81–85,88,90,91,95,96,98,99,101,
104,115,118,119,125,126,135,136]

[142,146,149,167,169,170,176,185,189,
191,203–206,217,219,220,222,231,232,
234,235,237,244,246]

[248,249,253–255,258,259,261,262,266–
268,271,276,277,279–281,283]

Survey research None

Ethnography None

Action research None

Table 7 gives an overview of approaches according to the
research methods described above. As mentioned, none of
the identified literature uses survey research, ethnography or
action research to evaluate the presented approaches.

3.9 Summary and survey publications

A number of publications provide summaries or surveys
related to models at runtime, which we summarize below.
None of those publications provides a systematic literature
review.

Bencomo [20] points out the importance of using models
at runtime. The author argues that long-living software sys-
tems need first-class representations of themselves to support
dynamic changes. Furthermore, the need of a more precise
distinction betweendevelopmentmodels and runtimemodels
is demanded, which our approach partially assists by under-
lining various kinds of runtime models. One open research
question of the paper addresses the problem of synchroniza-
tion between runtime models and the running system. We
help answering this question by our summary of techniques
for processing runtime models: Introspection, conformance,
comparison, transformation, and execution.

Blair et al. [34] also point out the important role of soft-
ware models at runtime. They present relevant articles and
emphasize several research challenges regarding models at
runtime. They divide models into several groups: Structure
versus behaviour, procedural versus declarative, functional
versus non-functional, and formal versus informal.While not

grouping our identified kinds of models according to these
classes, in contrast to their classification our work focuses on
objectives, techniques, and architectures when using models
at runtime.

Vogel et al. [256,259] list different classes of models used
at runtime: Implementation models are platform-specific and
coupled to the system’s implementation, Configuration and
ArchitecturalModels reflect the current system configuration
and provide architectural views, Context and Resource Mod-
els describe the environment of a system and Configuration
Space and Variability Models reveal possible variants of a
system. Their approach focus on the relations between these
models while our work emphasizes objectives, techniques,
and architectures of runtime models in general.

Asmentioned in Sect. 3.3.1, adaptation is onemain objec-
tive to cope with continuously changing requirements. Our
literature search yielded proceedings of conferences special-
izing in adaptive and self-managing systems [213], interna-
tional workshops on models in general [165] and workshops
on ubiquitous systems [216]. All these topics relate to adap-
tation in general, giving us confidence that the importance
of runtime models will increase in the future. As seen in the
introduced approaches throughout the article, runtime mod-
els are an effective instrument to tackle various problems
regarding adaptation needs such as requirement evolution
and changing environments.

4 Discussion

In this section, we assess our literature search method, the
precision of our search results, possible distortions by our
selection criteria and limitations of this study. Furthermore,
we discuss our collected results and relate them to our
research questions introduced in Sect. 2.2. At the end of
this section, we discuss perspectives and future challenges
of models at runtime.

4.1 Search method

In each SLR, the question arises whether relevant publi-
cations were omitted due to our literature search method.
For instance, we could have improved our search results
by including more publishers. This would potentially have
led to an increased number of publications but would also
complicate the phases of filtering, duplicate elimination, and
grouping. We decided to choose only the ACM Guide to
Computing Literature and IEEE Xplore, which include bib-
liographic information from all major publishers in comput-
ing (e.g. Springer, Elsevier, etc.), and compensate possibly
missed publications by extending our search to other pub-
lishers by our snowballing phase. The low number of addi-
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tional publications found during snowballing indicates that
our search has found most of the relevant literature.

Another possible distortion in our search results may
result from publication filtering by looking at their abstracts.
Abstracts can be very short or even not be available, bring-
ing inaccuracy into our search. Furthermore, we realized
that some of the abstracts suffer from incorrect formatting
(e.g. words of a sentence sticking together). We are unsure
whether this is just a presentation issue or whether this has
bad influence on the search functionality. We compensate
such perturbations by including multiple spellings of words
and abbreviations in our search string and by shifting inclu-
sion/exclusion decisions to later,more detailed phases in case
of uncertainty. Again, the low number of additional publica-
tions found during snowballing indicates that our strategy
worked well.

We applied our snowballing phase only to papers to be
discussed in detail. While we could apply snowballing to
other publications as well, we decided to keep the number of
additional literaturemanageable, expecting that references of
non-detailed papers would again yield papers not fitting the
topic exactly. Keeping the number of papers manageable was
also achieved by dismissing publications if uncertainty about
relevance and classification persisted until the elimination
phase.

Overall, despite a structured proceeding, aminimal degree
of subjectivity regarding decisions about inclusion and exclu-
sion of publications remains, especially when weighing fit-
ting/not fitting the topic, importance/unimportance of facts
and classification of literature.

4.2 Classification into objectives, techniques, architectures,
and kinds of models

In this article, we analyze objectives, techniques, architec-
tures, and kinds of models when using models at runtime
to identify research areas not covered so far and to pro-
vide a comprehensive overview for researchers who are
new to this topic. Our classification contains some overlaps
because there exist interconnections between the aspects (e.g.
(model-)conformance is considered as objective and tech-
nique). Figure 18 shows the relationships between the four
aspects.

Objectives Kinds of models

Techniques Architectures

determine

realize organize

operate on

Fig. 18 Interconnections of the proposed classification aspects

Objectives determine the kinds of models which can be
used to support the satisfaction of these objectives (e.g.
the objective error handling can be satisfied by using state
machine models, but hardly by using feature models). Archi-
tectures organize the selected kinds ofmodels andmake them
available at runtime through various interfaces (e.g. a repos-
itory architecture enables access to business process models
through a special query interface). Techniques are responsi-
ble for realizing objectives by utilizing model access inter-
faces provided by the architecture (e.g. within a monolithic
architecture, the techniquemodel comparison gets the archi-
tecture model from an XMI file, compares it with the current
configuration, and calculates corrective actions, thus satisfy-
ing the objective of adaptation).

In other words, for every objective there exists a set of
kinds of models which help to satisfy that objective when
used at runtime (see Table 4 for details). Architectures and
techniques are independent of the pursued objective and the
used kinds of models (an exception here is the technique
model execution since not every kind of model is executable;
furthermore, it is debatable whether this technique is related
to the topic of models at runtime—see Sect. 3.4.6).

Our proposed classification is the only one possibility to
structure runtimemodel approaches, and other classifications
also qualify for giving an overview of various runtime model
aspects (e.g. different model query techniques/languages,
synchronization mechanisms and feedback loop variations).

4.3 Research questions

In Sect. 2.2, we introduced four different research questions
and were able to answer these the following way according
to our research results:

Forwhat purposes aremodels used at runtime?Weanswer
this by identifying different objectives throughout our liter-
ature analysis: Adaptation, abstraction, consistency, confor-
mance, error handling, monitoring, simulation, prediction,
platform independence and policy checking/enforcement.
A common objective of all these classes is the shift from
low-level system interactions to model-based processing
which is closer to the problem space. Recent research intro-
duces requirements-based and goal-oriented mechanisms to
continue this shift further in the problem space direction
[53,215,260].

Which techniques are applied when processing mod-
els at runtime? We identified the following techniques
when processing models at runtime: Autonomic control
loops, introspection, model conformance, model compari-
son,model transformation, andmodel execution. These tech-
niques address the ongoing surveillance of a running system,
the extraction of its data, and the model-based processing
to reason about the system and to affect its execution. As
described in Sect. 3.4.6, there is still no consensus about the
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relationship between model execution and the models at run-
time paradigm.

Which problems are addressed by using models at run-
time?Our classification of problems includes inaccurate pre-
dictions, changing environments and requirements, combi-
natorial explosion of system variants, error localization, rule
enforcement and hand-written artefacts with low reusability,
maintenance and abstraction. Early approaches focussed on
architectural adaptation to tackle the problems of changing
environments and requirements. Over time researches real-
ized the potential of models at runtime and extended their
field of application to cope with additional problems. Ongo-
ing research on models at runtime indicates that there will be
more extensions in the near future.

Which architectures exist for processing models at run-
time? Identified approaches use monolithic, local dataflow,
middleware and repository architectures which often overlap
in their usage. Such architectures must include introspective
capabilities to extract runtime information and to relate the
collected data with models. Models at runtime differ from
reflection mainly in terms of abstraction: Reflection is solu-
tion space-oriented, while models at runtime operate on a
higher level of abstraction towards problem space [34]. The
selection of an architecture which supports runtime models
could be assisted by using architectural decision templates
[282] (see Sect. 4.4 for details).

Which research methods are most frequently used for
evaluating runtime model approaches? Which empirical evi-
dence has been reported? Evaluation and corresponding evi-
dence for models at runtime is most often provided through
example scenarios only or not at all. In only 37 cases, case
studies have been conducted within realistic settings. Only
10 controlled experiments have been conducted. Often met-
rics are used for evaluation. As Fig. 17 outlines, performance
measurement is by far the most often used method for eval-
uating approaches dealing with models at runtime.

Besides purposes, techniques, problems, and architec-
tures, we identified different kinds of models used in our
selected literature. We pointed out the broad field of mean-
ings, use cases and representations of runtime models. We
did not distinguish between different model representations
(e.g. graphical, textual) to capture all publications using the
term model in combination with runtime utilization.

As demonstrated by our presentation of the most rele-
vant approaches, models used at runtime cover many dif-
ferent research areas leading from low-level adaptation on
AST-level to High Performance Computing. The majority of
our analyzed literature deals with model-based monitoring
and software adaptation according to changing environments
and requirements. Few approaches address trace visualiza-
tion and parameter prediction. Other areas not addressed in
detail so far are model-based monitoring, adaptation, and
architecture reconstruction of software where introspection

mechanisms - namely event log checking, instrumentation
and management APIs — cannot be applied easily, as is the
case with legacy systems.

4.4 Perspectives and future challenges

Early approaches using models at runtime focussed on
architecture-based mechanisms to realize monitoring and
adaptation [95,96,98]. The ideas further evolved from
early middleware-based adaptation approaches [63,65,74,
152,210] to other topics like error handling [135,145] and
model execution (see Sect. 3.4.6). Several approaches refined
the management of causal connections between models and
the running system [105–108,136,231–235,255,257,258].
Recent approaches refine established techniques like feed-
back loops [59,155,157,202] and abstract running systems
even further by focussing on goal- and requirement-oriented
aspects [53,215,260]. Overall, there has been a recognizable
shift from simple adaptation interests to wider application
fields and more goal-oriented and user-centric approaches
over the last years [30]. The question arises in which direc-
tion models at runtime will evolve in the future.

While researchers put a lot of effort into the develop-
ment of monitoring, adaptation, and synchronization mecha-
nisms, we think that there is a strong need for process-related
enhancements when designing and implementing systems
which are augmented by runtime models. Differences to tra-
ditional development processes have to be elaborated, espe-
cially in terms of testing to ensure quality of the resulting
application. The vast amount of models combined with dif-
ferent architectures and techniques lead to a great number of
test cases which have to be executed to reduce the possibility
of runtime errors in such highly dynamic environments. We
believe that a tool-assisted selection of architectures, tech-
niques, kinds ofmodels, and testingmechanismswould boost
the development and adoption of applications using models
at runtime. Reusable architectural decision templates would
be a first step to realize such an assisting framework [282].

5 Conclusions

In this article, we applied a systematic literature review to
analyze objectives, techniques, kinds, and architectureswhen
using models at runtime. Our search yielded a classification
of distinct groups containing 122 papers analyzed in detail,
87 not detailed, and 33 dismissed papers. We identified dif-
ferent objectives throughout our literature analysis, namely
adaptation, abstraction, consistency, conformance, error han-
dling, monitoring, simulation, prediction, platform indepen-
dence, and policy checking/enforcement. We demonstrated
the usage of different kinds of models in our identified lit-
erature to achieve these objectives and to tackle common
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problems of inaccurate predictions, changing environments,
error localization, hand-written artefacts, and combinator-
ial explosions regarding system configurations. We identi-
fied different techniques when processing runtime models to
extract runtime data, raise the abstraction level and enforce
constraints: Introspection, model conformance, model com-
parison, model transformation, and model execution. We
demonstrated the usage of these techniques in our selected
literature and explained their similarities and differences.
Regarding architectures, identified approaches use mono-
lithic, local dataflow, middleware, and repository architec-
tures which often overlap in their usage.

With thiswork, we aim to provide a basis for future studies
and to promote ideas for research areas not covered in detail
bymodels at runtime so far. In particular, we aim to automate
parts of the runtimemodel development process and improve
the architectural decision process when designing systems
with runtime model support.
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